Question #240731
Let f be a differentiable function. Establish that identity |f'(z)|^2=(Ux)^2 + (Vx)^2 = (Uy)^2 + (Vy)^2
1
Expert's answer
2022-01-31T16:41:39-0500

Let f be a C\mathbb{C}-differentiable function at a point zCz\in\mathbb{C}. This means that there exist the following limit: limΔz0f(z+Δz)f(z)Δz=f(z)\lim\limits_{\Delta z\to 0}\frac{f(z+\Delta z)-f(z)}{\Delta z}=f'(z).

In particular, if we restrict Δz\Delta z to take only real values (in this case then Δz=Δx\Delta z=\Delta x), then we conclude that there exists a partial derivative f/x\partial f/\partial x at the point zz:

fx(z):=fx(z):=limΔx0f(z+Δx)f(z)Δx=f(z)f_x(z):=\frac{\partial f}{\partial x}(z):=\lim\limits_{\Delta x\to 0}\frac{f(z+\Delta x)-f(z)}{\Delta x}=f'(z)

In the similar way, if we restrict Δz\Delta z to take only imaginary values (in this case then Δz=iΔy\Delta z=i\Delta y), then we conclude that there exists a partial derivative f/y\partial f/\partial y at the point zz:

fy(z):=fy(z):=limΔy0f(z+iΔy)f(z)Δy=ilimΔy0f(z+iΔy)f(z)iΔy=if(z)f_y(z):=\frac{\partial f}{\partial y}(z):=\lim\limits_{\Delta y\to 0}\frac{f(z+i\Delta y)-f(z)}{\Delta y}=i\lim\limits_{\Delta y\to 0}\frac{f(z+i\Delta y)-f(z)}{i\Delta y}=if'(z)

Let u(z)u(z) and v(z)v(z) are (respectively) the real and the imaginary part of the function f(z)f(z). Then

f(z)=u(z)+iv(z)f(z)=u(z)+iv(z),

fx(z)=ux(z)+ivx(z)f_x(z)=u_x(z)+iv_x(z) and

ux(z)2+vx(z)2=fx(z)2=f(z)2u_x(z)^2+v_x(z)^2=|f_x(z)|^2=|f'(z)|^2

Similarly,

fy(z)=uy(z)+ivy(z)f_y(z)=u_y(z)+iv_y(z) and

uy(z)2+vy(z)2=fy(z)2=if(z)2=f(z)2u_y(z)^2+v_y(z)^2=|f_y(z)|^2=|if'(z)|^2=|f'(z)|^2

Therefore, f(z)2=ux(z)2+vx(z)2=uy(z)2+vy(z)2|f'(z)|^2=u_x(z)^2+v_x(z)^2=u_y(z)^2+v_y(z)^2, as required.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS