Question #236005

\intop 1/(3-2cosθ\theta +sinθ\theta ) using contour integration limit 0 to 2pi


1
Expert's answer
2022-01-31T16:43:52-0500

1/(32cosθ+sinθ)=2(1tan2(θ/2))tan2(θ/2)+1+2tan(θ/2)tan2(θ/2)+1+31/(3-2cos\theta +sin\theta )=-\frac{2(1-tan^2(\theta /2))}{tan^2(\theta /2)+1}+\frac{2tan(\theta /2)}{tan^2(\theta /2)+1}+3


u=tan(θ/2)    dx=2du/(u2+1)u=tan(\theta /2)\implies dx=2du/(u^2+1)


1/(32cosθ+sinθ)dθ=212(u2+u)+3u2+1du=21(u5+1/5)2+4/5du=∫ 1/(3-2cos\theta +sin\theta)d\theta =2\int \frac{1}{2(u^2+u)+3u^2+1}du=2\int \frac{1}{(u\sqrt 5+1/\sqrt 5)^2+4/5}du=


v=(5u+1)/2    du2dv/5v=(5u+1)/2\implies du 2dv/5


=225(4v2/5+4/5)dv=dv1+v2=arctanv=arctan5u+12=arctan5tan(θ/2)+12=2\int \frac{2}{5(4v^2/5+4/5)}dv=\int \frac{dv}{1+v^2}=arctanv=arctan \frac{5u+1}{2}=arctan\frac{5tan(\theta/2)+1}{2}


02π1/(32cosθ+sinθ)dθ=arctan5tan(θ/2)+1202π=∫^{2\pi}_0 1/(3-2cos\theta +sin\theta)d\theta=arctan\frac{5tan(\theta/2)+1}{2}|^{2\pi}_0=


=arctan1/2arctan1/2=0=arctan 1/2-arctan 1/2=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS