1/(3−2cosθ+sinθ)=−tan2(θ/2)+12(1−tan2(θ/2))+tan2(θ/2)+12tan(θ/2)+3
u=tan(θ/2)⟹dx=2du/(u2+1)
∫1/(3−2cosθ+sinθ)dθ=2∫2(u2+u)+3u2+11du=2∫(u5+1/5)2+4/51du=
v=(5u+1)/2⟹du2dv/5
=2∫5(4v2/5+4/5)2dv=∫1+v2dv=arctanv=arctan25u+1=arctan25tan(θ/2)+1
∫02π1/(3−2cosθ+sinθ)dθ=arctan25tan(θ/2)+1∣02π=
=arctan1/2−arctan1/2=0
Comments