1 / ( 3 − 2 c o s θ + s i n θ ) = − 2 ( 1 − t a n 2 ( θ / 2 ) ) t a n 2 ( θ / 2 ) + 1 + 2 t a n ( θ / 2 ) t a n 2 ( θ / 2 ) + 1 + 3 1/(3-2cos\theta +sin\theta )=-\frac{2(1-tan^2(\theta /2))}{tan^2(\theta /2)+1}+\frac{2tan(\theta /2)}{tan^2(\theta /2)+1}+3 1/ ( 3 − 2 cos θ + s in θ ) = − t a n 2 ( θ /2 ) + 1 2 ( 1 − t a n 2 ( θ /2 )) + t a n 2 ( θ /2 ) + 1 2 t an ( θ /2 ) + 3
u = t a n ( θ / 2 ) ⟹ d x = 2 d u / ( u 2 + 1 ) u=tan(\theta /2)\implies dx=2du/(u^2+1) u = t an ( θ /2 ) ⟹ d x = 2 d u / ( u 2 + 1 )
∫ 1 / ( 3 − 2 c o s θ + s i n θ ) d θ = 2 ∫ 1 2 ( u 2 + u ) + 3 u 2 + 1 d u = 2 ∫ 1 ( u 5 + 1 / 5 ) 2 + 4 / 5 d u = ∫ 1/(3-2cos\theta +sin\theta)d\theta =2\int \frac{1}{2(u^2+u)+3u^2+1}du=2\int \frac{1}{(u\sqrt 5+1/\sqrt 5)^2+4/5}du= ∫ 1/ ( 3 − 2 cos θ + s in θ ) d θ = 2 ∫ 2 ( u 2 + u ) + 3 u 2 + 1 1 d u = 2 ∫ ( u 5 + 1/ 5 ) 2 + 4/5 1 d u =
v = ( 5 u + 1 ) / 2 ⟹ d u 2 d v / 5 v=(5u+1)/2\implies du 2dv/5 v = ( 5 u + 1 ) /2 ⟹ d u 2 d v /5
= 2 ∫ 2 5 ( 4 v 2 / 5 + 4 / 5 ) d v = ∫ d v 1 + v 2 = a r c t a n v = a r c t a n 5 u + 1 2 = a r c t a n 5 t a n ( θ / 2 ) + 1 2 =2\int \frac{2}{5(4v^2/5+4/5)}dv=\int \frac{dv}{1+v^2}=arctanv=arctan \frac{5u+1}{2}=arctan\frac{5tan(\theta/2)+1}{2} = 2 ∫ 5 ( 4 v 2 /5 + 4/5 ) 2 d v = ∫ 1 + v 2 d v = a rc t an v = a rc t an 2 5 u + 1 = a rc t an 2 5 t an ( θ /2 ) + 1
∫ 0 2 π 1 / ( 3 − 2 c o s θ + s i n θ ) d θ = a r c t a n 5 t a n ( θ / 2 ) + 1 2 ∣ 0 2 π = ∫^{2\pi}_0 1/(3-2cos\theta +sin\theta)d\theta=arctan\frac{5tan(\theta/2)+1}{2}|^{2\pi}_0= ∫ 0 2 π 1/ ( 3 − 2 cos θ + s in θ ) d θ = a rc t an 2 5 t an ( θ /2 ) + 1 ∣ 0 2 π =
= a r c t a n 1 / 2 − a r c t a n 1 / 2 = 0 =arctan 1/2-arctan 1/2=0 = a rc t an 1/2 − a rc t an 1/2 = 0
Comments