Find all the cube roots of
Find all the cube roots of "1+i."
The polar form of "1+i" is "\\sqrt{2}(\\cos\\dfrac{\\pi}{4}+i\\sin \\dfrac{\\pi}{4})."
According to the De Moivre's Formula, all "n"-th roots of a complex number "r(\\cos(\\theta)+i\\sin(\\theta))" are given by "r^{1\/n}(\\cos\\dfrac{\\theta+2\\pi k}{n}+i\\sin \\dfrac{\\theta+2\\pi k}{n}), k=0, 1,...,n-1."
We have that "r=\\sqrt{2}, \\theta=\\dfrac{\\pi}{4}, n=3."
"k=0"
"k=1"
"=2^{1\/6}(\\cos(\\dfrac{3\\pi }{4})+i\\sin(\\dfrac{3\\pi }{4}))"
"k=2"
"2^{1\/6}(\\cos(\\dfrac{\\pi }{12}+\\dfrac{4\\pi}{3})+i\\sin(\\dfrac{\\pi }{12}+\\dfrac{4\\pi}{3}))""=2^{1\/6}(\\cos(\\dfrac{17\\pi }{12})+i\\sin(\\dfrac{17\\pi }{12}))""=-2^{1\/6}(\\cos(\\dfrac{5\\pi }{12})+i\\sin(\\dfrac{5\\pi }{12}))"
Comments
Leave a comment