Find all the cube roots of 1+i.
The polar form of 1+i is 2(cos4π+isin4π).
According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ)) are given by r1/n(cosnθ+2πk+isinnθ+2πk),k=0,1,...,n−1.
We have that r=2,θ=4π,n=3.
k=0
21/6(cos12π+isin12π)
k=1
21/6(cos(12π+32π)+isin(12π+32π))
=21/6(cos(43π)+isin(43π))
k=2
21/6(cos(12π+34π)+isin(12π+34π))
=21/6(cos(1217π)+isin(1217π))=−21/6(cos(125π)+isin(125π))
Comments