Question #228328

Find all the cube roots of


1
Expert's answer
2021-08-24T16:00:27-0400

Find all the cube roots of 1+i.1+i.

The polar form of 1+i1+i is 2(cosπ4+isinπ4).\sqrt{2}(\cos\dfrac{\pi}{4}+i\sin \dfrac{\pi}{4}).

According to the De Moivre's Formula, all nn-th roots of a complex number r(cos(θ)+isin(θ))r(\cos(\theta)+i\sin(\theta)) are given by r1/n(cosθ+2πkn+isinθ+2πkn),k=0,1,...,n1.r^{1/n}(\cos\dfrac{\theta+2\pi k}{n}+i\sin \dfrac{\theta+2\pi k}{n}), k=0, 1,...,n-1.

We have that r=2,θ=π4,n=3.r=\sqrt{2}, \theta=\dfrac{\pi}{4}, n=3.

k=0k=0


21/6(cosπ12+isinπ12)2^{1/6}(\cos\dfrac{\pi }{12}+i\sin\dfrac{\pi }{12})


k=1k=1


21/6(cos(π12+2π3)+isin(π12+2π3))2^{1/6}(\cos(\dfrac{\pi }{12}+\dfrac{2\pi}{3})+i\sin(\dfrac{\pi }{12}+\dfrac{2\pi}{3}))

=21/6(cos(3π4)+isin(3π4))=2^{1/6}(\cos(\dfrac{3\pi }{4})+i\sin(\dfrac{3\pi }{4}))

k=2k=2

21/6(cos(π12+4π3)+isin(π12+4π3))2^{1/6}(\cos(\dfrac{\pi }{12}+\dfrac{4\pi}{3})+i\sin(\dfrac{\pi }{12}+\dfrac{4\pi}{3}))

=21/6(cos(17π12)+isin(17π12))=2^{1/6}(\cos(\dfrac{17\pi }{12})+i\sin(\dfrac{17\pi }{12}))=21/6(cos(5π12)+isin(5π12))=-2^{1/6}(\cos(\dfrac{5\pi }{12})+i\sin(\dfrac{5\pi }{12}))



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS