Find all the cube roots of 1 + i . 1+i. 1 + i .
The polar form of 1 + i 1+i 1 + i is 2 ( cos π 4 + i sin π 4 ) . \sqrt{2}(\cos\dfrac{\pi}{4}+i\sin \dfrac{\pi}{4}). 2 ( cos 4 π + i sin 4 π ) .
According to the De Moivre's Formula, all n n n -th roots of a complex number r ( cos ( θ ) + i sin ( θ ) ) r(\cos(\theta)+i\sin(\theta)) r ( cos ( θ ) + i sin ( θ )) are given by r 1 / n ( cos θ + 2 π k n + i sin θ + 2 π k n ) , k = 0 , 1 , . . . , n − 1. r^{1/n}(\cos\dfrac{\theta+2\pi k}{n}+i\sin \dfrac{\theta+2\pi k}{n}), k=0, 1,...,n-1. r 1/ n ( cos n θ + 2 πk + i sin n θ + 2 πk ) , k = 0 , 1 , ... , n − 1.
We have that r = 2 , θ = π 4 , n = 3. r=\sqrt{2}, \theta=\dfrac{\pi}{4}, n=3. r = 2 , θ = 4 π , n = 3.
k = 0 k=0 k = 0
2 1 / 6 ( cos π 12 + i sin π 12 ) 2^{1/6}(\cos\dfrac{\pi }{12}+i\sin\dfrac{\pi }{12}) 2 1/6 ( cos 12 π + i sin 12 π )
k = 1 k=1 k = 1
2 1 / 6 ( cos ( π 12 + 2 π 3 ) + i sin ( π 12 + 2 π 3 ) ) 2^{1/6}(\cos(\dfrac{\pi }{12}+\dfrac{2\pi}{3})+i\sin(\dfrac{\pi }{12}+\dfrac{2\pi}{3})) 2 1/6 ( cos ( 12 π + 3 2 π ) + i sin ( 12 π + 3 2 π ))
= 2 1 / 6 ( cos ( 3 π 4 ) + i sin ( 3 π 4 ) ) =2^{1/6}(\cos(\dfrac{3\pi }{4})+i\sin(\dfrac{3\pi }{4})) = 2 1/6 ( cos ( 4 3 π ) + i sin ( 4 3 π ))
k = 2 k=2 k = 2
2 1 / 6 ( cos ( π 12 + 4 π 3 ) + i sin ( π 12 + 4 π 3 ) ) 2^{1/6}(\cos(\dfrac{\pi }{12}+\dfrac{4\pi}{3})+i\sin(\dfrac{\pi }{12}+\dfrac{4\pi}{3})) 2 1/6 ( cos ( 12 π + 3 4 π ) + i sin ( 12 π + 3 4 π ))
= 2 1 / 6 ( cos ( 17 π 12 ) + i sin ( 17 π 12 ) ) =2^{1/6}(\cos(\dfrac{17\pi }{12})+i\sin(\dfrac{17\pi }{12})) = 2 1/6 ( cos ( 12 17 π ) + i sin ( 12 17 π )) = − 2 1 / 6 ( cos ( 5 π 12 ) + i sin ( 5 π 12 ) ) =-2^{1/6}(\cos(\dfrac{5\pi }{12})+i\sin(\dfrac{5\pi }{12})) = − 2 1/6 ( cos ( 12 5 π ) + i sin ( 12 5 π ))
Comments