Find the general solution of the differential equation dy/dx = xy / (x+2)(x+1) expressing y explicitly in terms of x.
"\\frac{{dy}}{{dx}} = \\frac{{xy}}{{(x + 2)(x + 1)}} \\Rightarrow\\\\ \\frac{{dy}}{y} = \\frac{{xdx}}{{(x + 2)(x + 1)}} \\Rightarrow \\frac{{dy}}{y} = \\frac{{2x + 2 - x - 2}}{{(x + 2)(x + 1)}}dx \\Rightarrow \\\\\\frac{{dy}}{y} = \\left( {\\frac{{2(x + 1)}}{{(x + 2)(x + 1)}} - \\frac{{x + 2}}{{(x + 2)(x + 1)}}} \\right)dx \\Rightarrow \\frac{{dy}}{y} = \\left( {\\frac{2}{{x + 2}} - \\frac{1}{{x + 1}}} \\right)dx \\\\\\Rightarrow \\ln y = 2\\ln (x + 2) - \\ln (x + 1) + \\ln C \\Rightarrow \\ln y = \\ln \\frac{{C{{(x + 2)}^2}}}{{x + 1}} \\Rightarrow y = \\frac{{C{{(x + 2)}^2}}}{{x + 1}}"
Answer: "y = \\frac{{C{{(x + 2)}^2}}}{{x + 1}}"
Comments
Leave a comment