Find the general solution of the differential equation dy/dx = xy / (x+2)(x+1) expressing y explicitly in terms of x.
dydx=xy(x+2)(x+1)⇒dyy=xdx(x+2)(x+1)⇒dyy=2x+2−x−2(x+2)(x+1)dx⇒dyy=(2(x+1)(x+2)(x+1)−x+2(x+2)(x+1))dx⇒dyy=(2x+2−1x+1)dx⇒lny=2ln(x+2)−ln(x+1)+lnC⇒lny=lnC(x+2)2x+1⇒y=C(x+2)2x+1\frac{{dy}}{{dx}} = \frac{{xy}}{{(x + 2)(x + 1)}} \Rightarrow\\ \frac{{dy}}{y} = \frac{{xdx}}{{(x + 2)(x + 1)}} \Rightarrow \frac{{dy}}{y} = \frac{{2x + 2 - x - 2}}{{(x + 2)(x + 1)}}dx \Rightarrow \\\frac{{dy}}{y} = \left( {\frac{{2(x + 1)}}{{(x + 2)(x + 1)}} - \frac{{x + 2}}{{(x + 2)(x + 1)}}} \right)dx \Rightarrow \frac{{dy}}{y} = \left( {\frac{2}{{x + 2}} - \frac{1}{{x + 1}}} \right)dx \\\Rightarrow \ln y = 2\ln (x + 2) - \ln (x + 1) + \ln C \Rightarrow \ln y = \ln \frac{{C{{(x + 2)}^2}}}{{x + 1}} \Rightarrow y = \frac{{C{{(x + 2)}^2}}}{{x + 1}}dxdy=(x+2)(x+1)xy⇒ydy=(x+2)(x+1)xdx⇒ydy=(x+2)(x+1)2x+2−x−2dx⇒ydy=((x+2)(x+1)2(x+1)−(x+2)(x+1)x+2)dx⇒ydy=(x+22−x+11)dx⇒lny=2ln(x+2)−ln(x+1)+lnC⇒lny=lnx+1C(x+2)2⇒y=x+1C(x+2)2
Answer: y=C(x+2)2x+1y = \frac{{C{{(x + 2)}^2}}}{{x + 1}}y=x+1C(x+2)2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments