Given that the complex number z and its conjugate z* satisfy the equation zz* + 2iz = 12 +6i. Find the possible value of z.
z=x+iyz=x+iyz=x+iy
z∗=x−iyz^*=x-iyz∗=x−iy
zz∗=x2+y2zz^*=x^2+y^2zz∗=x2+y2
x2+y2+2xi−2y=12+6ix^2+y^2+2xi-2y=12+6ix2+y2+2xi−2y=12+6i
x2+y2−2y=12x^2+y^2-2y=12x2+y2−2y=12
2xi=6i2xi=6i2xi=6i
x=3x=3x=3
9+y2−2y=129+y^2-2y=129+y2−2y=12
y2−2y−3=0y^2-2y-3=0y2−2y−3=0
y1=2−4+122=−1y_1=\frac{2-\sqrt{4+12}}{2}=-1y1=22−4+12=−1
y2=3y_2=3y2=3
Answer:
z1=3−iz_1=3-iz1=3−i
z2=3+3iz_2=3+3iz2=3+3i
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments