Question #223098

The two complex numbers z1 and z2 are represented on an argand diagram. Show that

Iz1 + z2I ≤ Iz1I +Iz2I. If Iz1I = 6 and Iz1I = 4+3i, Show that the greatest value of Iz1 + z2I is 11 and find its least value.



1
Expert's answer
2021-09-08T10:44:00-0400

We represent complex numbers in trigonometric form:

z1=r1(cosφ+isinφ),z2=r2(cosψ+isinψ){z_1} = {r_1}\left( {\cos \varphi + i\sin \varphi } \right),\,\,{z_2} = {r_2}\left( {\cos \psi + i\sin \psi } \right) (where r1=z1,r2=z2{r_1} = |{z_1}|,\,\,{r_2} = |{z_2}| )

Then

z1+z2=r1cosφ+r2cosψ+i(r1sinφ+r2sinψ){z_1} + {z_2} = {r_1}\cos \varphi + {r_2}\cos \psi + i\left( {{r_1}\sin \varphi + {r_2}\sin \psi } \right)

Then

z1+z22=(r1cosφ+r2cosψ)2+(r1sinφ+r2sinψ)2=r12cos2φ+2r1r2cosφcosψ+r22cos2ψ+r12sin2φ+2r1r2sinφsinψ+r22sin2ψ=r12(cos2φ+sin2φ)+r22(cos2ψ+sin2ψ)+2r1r2(cosφcosψ+sinφsinψ)=r12+r22+2r1r2(cosφcosψ+sinφsinψ)=r12+r22+2r1r2cos(φψ)|{z_1} + {z_2}{|^2} = {\left( {{r_1}\cos \varphi + {r_2}\cos \psi } \right)^2} + {\left( {{r_1}\sin \varphi + {r_2}\sin \psi } \right)^2} = r_1^2{\cos ^2}\varphi + 2{r_1}{r_2}\cos \varphi \cos \psi + r_2^2{\cos ^2}\psi + r_1^2{\sin ^2}\varphi + 2{r_1}{r_2}\sin \varphi \sin \psi + r_2^2{\sin ^2}\psi = r_1^2\left( {{{\cos }^2}\varphi + {{\sin }^2}\varphi } \right) + r_2^2\left( {{{\cos }^2}\psi + {{\sin }^2}\psi } \right) + 2{r_1}{r_2}\left( {\cos \varphi \cos \psi + \sin \varphi \sin \psi } \right) = r_1^2 + r_2^2 + 2{r_1}{r_2}\left( {\cos \varphi \cos \psi + \sin \varphi \sin \psi } \right) = r_1^2 + r_2^2 + 2{r_1}{r_2}\cos \left( {\varphi - \psi } \right)

But

cos(φψ)1\cos \left( {\varphi - \psi } \right) \le 1

Then

r12+r22+2r1r2cos(φψ)r12+r22+2r1r2z1+z22(r1+r2)2r_1^2 + r_2^2 + 2{r_1}{r_2}\cos \left( {\varphi - \psi } \right) \le r_1^2 + r_2^2 + 2{r_1}{r_2} \Rightarrow |{z_1} + {z_2}{|^2} \le {\left( {{r_1} + {r_2}} \right)^2}

Since

z1+z20,r10,r20|{z_1} + {z_2}| \ge 0,\,\,{r_1} \ge 0,\,\,{r_2} \ge 0

then

z1+z2r1+r2z1+z2z1+z2|{z_1} + {z_2}| \le {r_1} + {r_2} \Rightarrow |{z_1} + {z_2}| \le |{z_1}| + |{z_2}|

Q. E. D




If

z1=6,z2=4+3iz_{1}=6,z_{2}=4+3i

then

z1=6,z2=42+32=5|{z_1}| = 6,\,|{z_2}| = \sqrt {{4^2} + {3^2}} \, = 5

but then

z1+z2z1+z2=6+5=11z1+z211|{z_1} + {z_2}| \le |{z_1}| + |{z_2}| = 6 + 5 = 11 \Rightarrow |{z_1} + {z_2}| \le 11

Q. E. D



In general, the least value z1+z2=0\left| {{z_1} + {z_2}} \right| = 0 (if z1=z2=0{z_1} = {z_2} = 0 ).

If z1=6,z2=4+3iz_{1}=6,z_{2}=4+3i then the least value is

z1+z2=6+4+3i=10+3i=102+32=109\left| {{z_1} + {z_2}} \right| = \left| {6 + 4 + 3i} \right| = \left| {10 + 3i} \right| = \sqrt {{{10}^2} + {3^2}} = \sqrt {109}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS