We represent complex numbers in trigonometric form:
z1=r1(cosφ+isinφ),z2=r2(cosψ+isinψ) (where r1=∣z1∣,r2=∣z2∣ )
Then
z1+z2=r1cosφ+r2cosψ+i(r1sinφ+r2sinψ)
Then
∣z1+z2∣2=(r1cosφ+r2cosψ)2+(r1sinφ+r2sinψ)2=r12cos2φ+2r1r2cosφcosψ+r22cos2ψ+r12sin2φ+2r1r2sinφsinψ+r22sin2ψ=r12(cos2φ+sin2φ)+r22(cos2ψ+sin2ψ)+2r1r2(cosφcosψ+sinφsinψ)=r12+r22+2r1r2(cosφcosψ+sinφsinψ)=r12+r22+2r1r2cos(φ−ψ)
But
cos(φ−ψ)≤1
Then
r12+r22+2r1r2cos(φ−ψ)≤r12+r22+2r1r2⇒∣z1+z2∣2≤(r1+r2)2
Since
∣z1+z2∣≥0,r1≥0,r2≥0
then
∣z1+z2∣≤r1+r2⇒∣z1+z2∣≤∣z1∣+∣z2∣
Q. E. D
If
z1=6,z2=4+3i
then
∣z1∣=6,∣z2∣=42+32=5
but then
∣z1+z2∣≤∣z1∣+∣z2∣=6+5=11⇒∣z1+z2∣≤11
Q. E. D
In general, the least value ∣z1+z2∣=0 (if z1=z2=0 ).
If z1=6,z2=4+3i then the least value is
∣z1+z2∣=∣6+4+3i∣=∣10+3i∣=102+32=109
Comments