The two complex numbers z1 and z2 are represented on an argand diagram. Show that
Iz1 + z2I ≤ Iz1I +Iz2I. If Iz1I = 6 and Iz1I = 4+3i, Show that the greatest value of Iz1 + z2I is 11 and find its least value.
We represent complex numbers in trigonometric form:
"{z_1} = {r_1}\\left( {\\cos \\varphi + i\\sin \\varphi } \\right),\\,\\,{z_2} = {r_2}\\left( {\\cos \\psi + i\\sin \\psi } \\right)" (where "{r_1} = |{z_1}|,\\,\\,{r_2} = |{z_2}|" )
Then
"{z_1} + {z_2} = {r_1}\\cos \\varphi + {r_2}\\cos \\psi + i\\left( {{r_1}\\sin \\varphi + {r_2}\\sin \\psi } \\right)"
Then
"|{z_1} + {z_2}{|^2} = {\\left( {{r_1}\\cos \\varphi + {r_2}\\cos \\psi } \\right)^2} + {\\left( {{r_1}\\sin \\varphi + {r_2}\\sin \\psi } \\right)^2} = r_1^2{\\cos ^2}\\varphi + 2{r_1}{r_2}\\cos \\varphi \\cos \\psi + r_2^2{\\cos ^2}\\psi + r_1^2{\\sin ^2}\\varphi + 2{r_1}{r_2}\\sin \\varphi \\sin \\psi + r_2^2{\\sin ^2}\\psi = r_1^2\\left( {{{\\cos }^2}\\varphi + {{\\sin }^2}\\varphi } \\right) + r_2^2\\left( {{{\\cos }^2}\\psi + {{\\sin }^2}\\psi } \\right) + 2{r_1}{r_2}\\left( {\\cos \\varphi \\cos \\psi + \\sin \\varphi \\sin \\psi } \\right) = r_1^2 + r_2^2 + 2{r_1}{r_2}\\left( {\\cos \\varphi \\cos \\psi + \\sin \\varphi \\sin \\psi } \\right) = r_1^2 + r_2^2 + 2{r_1}{r_2}\\cos \\left( {\\varphi - \\psi } \\right)"
But
"\\cos \\left( {\\varphi - \\psi } \\right) \\le 1"
Then
"r_1^2 + r_2^2 + 2{r_1}{r_2}\\cos \\left( {\\varphi - \\psi } \\right) \\le r_1^2 + r_2^2 + 2{r_1}{r_2} \\Rightarrow |{z_1} + {z_2}{|^2} \\le {\\left( {{r_1} + {r_2}} \\right)^2}"
Since
"|{z_1} + {z_2}| \\ge 0,\\,\\,{r_1} \\ge 0,\\,\\,{r_2} \\ge 0"
then
"|{z_1} + {z_2}| \\le {r_1} + {r_2} \\Rightarrow |{z_1} + {z_2}| \\le |{z_1}| + |{z_2}|"
Q. E. D
If
"z_{1}=6,z_{2}=4+3i"
then
"|{z_1}| = 6,\\,|{z_2}| = \\sqrt {{4^2} + {3^2}} \\, = 5"
but then
"|{z_1} + {z_2}| \\le |{z_1}| + |{z_2}| = 6 + 5 = 11 \\Rightarrow |{z_1} + {z_2}| \\le 11"
Q. E. D
In general, the least value "\\left| {{z_1} + {z_2}} \\right| = 0" (if "{z_1} = {z_2} = 0" ).
If "z_{1}=6,z_{2}=4+3i" then the least value is
"\\left| {{z_1} + {z_2}} \\right| = \\left| {6 + 4 + 3i} \\right| = \\left| {10 + 3i} \\right| = \\sqrt {{{10}^2} + {3^2}} = \\sqrt {109}"
Comments
Leave a comment