Using the fact that if z = r(cosθ +isinθ) then z2 = r2(cosθ +isinθ), find the square root of
2√3 -2i
"\\displaystyle\n\\textsf{Let}\\,\\,\\, z = 2\\sqrt{3} - 2i\\\\\n\n\\arg{z} = \\arctan\\left(\\frac{-2}{2\\sqrt{3}}\\right) = -\\frac{\\pi}{6}\\\\\n\n|z| = \\sqrt{12 + 4} = 4\\\\\n\n\\implies z = 4e^{-\\frac{i\\pi}{6}}\\\\\n\n\\begin{aligned}\nz^{\\frac{1}{2}} &= \\pm 2e^{-\\frac{i\\pi}{12}}\n\\\\&= \\pm 2\\cos\\left(\\frac{\\pi}{12}\\right) - \\left(\\pm i2\\sin\\left(\\frac{\\pi}{12}\\right)\\right) \\\\&= \\pm 2\\cos\\left(\\frac{\\pi}{12}\\right) \\mp i2\\sin\\left(\\frac{\\pi}{12}\\right)\n\\end{aligned}\\\\\n\\textsf{It implies that the square root is}\\\\2\\cos\\left(\\frac{\\pi}{12}\\right) - i2\\sin\\left(\\frac{\\pi}{12}\\right) \\,\\,\\textup{or}\\\\\n-2\\cos\\left(\\frac{\\pi}{12}\\right) + i2\\sin\\left(\\frac{\\pi}{12}\\right)"
Comments
Leave a comment