a) z = 0.509 + i 7.182 z=0.509+i7.182 z = 0.509 + i 7.182
∣ z ∣ = ( 0.509 ) 2 + ( 7.182 ) 2 ≈ 7.200 |z|=\sqrt{(0.509)^2+(7.182)^2}\approx7.200 ∣ z ∣ = ( 0.509 ) 2 + ( 7.182 ) 2 ≈ 7.200
θ = tan − 1 ( 7.182 0.509 ) ≈ 1.500 \theta=\tan^{-1}(\dfrac{7.182}{0.509})\approx1.500 θ = tan − 1 ( 0.509 7.182 ) ≈ 1.500
z = 7.200 e i 1.500 z=7.200e^{i1.500} z = 7.200 e i 1.500
b) z = 0.509 − i 2.281 z=0.509-i2.281 z = 0.509 − i 2.281
∣ z ∣ = ( 0.509 ) 2 + ( − 2.281 ) 2 ≈ 2.337 |z|=\sqrt{(0.509)^2+(-2.281)^2}\approx2.337 ∣ z ∣ = ( 0.509 ) 2 + ( − 2.281 ) 2 ≈ 2.337
θ = tan − 1 ( − 2.281 0.509 ) ≈ − 1.351 \theta=\tan^{-1}(\dfrac{-2.281}{0.509})\approx-1.351 θ = tan − 1 ( 0.509 − 2.281 ) ≈ − 1.351
z = 2.337 e − i 1.351 o r z = 2.337 e i 4.932 z=2.337e^{-i1.351}\ or\ z=2.337e^{i4.932} z = 2.337 e − i 1.351 or z = 2.337 e i 4.932
c) z = 2.182 + i 7.217 z=2.182+i7.217 z = 2.182 + i 7.217
∣ z ∣ = ( 2.182 ) 2 + ( 7.217 ) 2 ≈ 7.540 |z|=\sqrt{(2.182)^2+(7.217)^2}\approx7.540 ∣ z ∣ = ( 2.182 ) 2 + ( 7.217 ) 2 ≈ 7.540
θ = tan − 1 ( 7.217 2.182 ) ≈ 1.277 \theta=\tan^{-1}(\dfrac{7.217}{2.182})\approx1.277 θ = tan − 1 ( 2.182 7.217 ) ≈ 1.277
z = 7.540 e i 1.277 z=7.540e^{i1.277} z = 7.540 e i 1.277
d) z = 0.217 + i 7.182 z=0.217+i7.182 z = 0.217 + i 7.182
∣ z ∣ = ( 0.217 ) 2 + ( 7.182 ) 2 ≈ 7.185 |z|=\sqrt{(0.217)^2+(7.182)^2}\approx7.185 ∣ z ∣ = ( 0.217 ) 2 + ( 7.182 ) 2 ≈ 7.185
θ = tan − 1 ( 7.182 0.217 ) ≈ 1.541 \theta=\tan^{-1}(\dfrac{7.182}{0.217})\approx1.541 θ = tan − 1 ( 0.217 7.182 ) ≈ 1.541
z = 7.185 e i 0.1541 z=7.185e^{i0.1541} z = 7.185 e i 0.1541
Answer
a) z = 0.509 + i 7.182 = 7.200 e i 1.500 z=0.509+i7.182=7.200e^{i1.500} z = 0.509 + i 7.182 = 7.200 e i 1.500
Comments