Question #350948

5. Prove that 19226k+2+319|2^{2^{6k+2}}+3 for k = 0, 1, 2, .... 


1
Expert's answer
2022-06-27T05:08:35-0400

Since gcd(4,19)=gcd(16,19)gcd(4,19)=gcd(16,19), then by Fermat's Little Theorem, 419141816181(mod 19)4^{19-1}\equiv4^{18}\equiv16^{18}\equiv1(mod\ 19).

Let P(k)P(k) be the statement 226k+216(mod 19)2^{2^{6k+2}}\equiv16(mod\ 19)

Proof by induction on kk that P(k)P(k) is true for all k0k\geq0:

Base case: Let k=0k=0, then 226k+22260+222216(mod 19)2^{2^{6k+2}}\equiv2^{2^{6\cdot0+2}}\equiv2^{2^2}\equiv16(mod\ 19), hence P(0)P(0) is true.

Inductive step: Suppose P(k)P(k) is true, then 226k+216(mod 19)2^{2^{6k+2}}\equiv16(mod\ 19), hence

226(k+1)+2226k+6+2226k+226(226k+2)261626166416318+101610420418+24216(mod 19)2^{2^{6(k+1)+2}}\equiv2^{2^{6k+6+2}}\equiv2^{2^{6k+2}\cdot 2^6}\equiv(2^{2^{6k+2}})^{2^6}\equiv\\16^{2^6} \equiv16^{64}\equiv16^{3\cdot18+10}\equiv16^{10}\equiv4^{20}\equiv4^{18+2}\equiv\\ 4^2\equiv16(mod \ 19)

so P(k)    P(k+1)P(k)\implies P(k+1).

Thus, by induction, P(k)P(k) is true for all k0.k\geq0.

Since 226k+216(mod 19)2^{2^{6k+2}}\equiv16(mod\ 19), then

226k+2+316+3(mod 19)19(mod 19)0(mod 19)2^{2^{6k+2}}+3\equiv16+3(mod\ 19)\equiv19(mod\ 19)\equiv 0(mod\ 19), so 19226k+2+3.19|2^{2^{6k+2}}+3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS