Since gcd(4,19)=gcd(16,19), then by Fermat's Little Theorem, 419−1≡418≡1618≡1(mod 19).
Let P(k) be the statement 226k+2≡16(mod 19)
Proof by induction on k that P(k) is true for all k≥0:
Base case: Let k=0, then 226k+2≡226⋅0+2≡222≡16(mod 19), hence P(0) is true.
Inductive step: Suppose P(k) is true, then 226k+2≡16(mod 19), hence
226(k+1)+2≡226k+6+2≡226k+2⋅26≡(226k+2)26≡1626≡1664≡163⋅18+10≡1610≡420≡418+2≡42≡16(mod 19)
so P(k)⟹P(k+1).
Thus, by induction, P(k) is true for all k≥0.
Since 226k+2≡16(mod 19), then
226k+2+3≡16+3(mod 19)≡19(mod 19)≡0(mod 19), so 19∣226k+2+3.
Comments