x 3 − 3 x − 3 = x 3 − 27 + 24 x − 3 = ( x − 3 ) ( x 2 + 3 x + 9 ) + 24 x − 3 = x 2 + 3 x + 9 ⏟ integer + 24 x − 3 \dfrac {x^3-3}{x-3}=~ \dfrac {x^3-27+24}{x-3}= ~\dfrac {(x-3)(x²+3x+9)+24}{x-3}=~\underbrace{x²+3x+9}_{\text{integer}}~+~\dfrac {24}{x-3} x − 3 x 3 − 3 = x − 3 x 3 − 27 + 24 = x − 3 ( x − 3 ) ( x 2 + 3 x + 9 ) + 24 = integer x 2 + 3 x + 9 + x − 3 24
So, we are looking for values of x, such that:
x − 3 ∣ 24 ⟹ ⟹ x − 3 ∈ { ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24 } ⟹ ⟹ x ∈ { − 21 , − 9 , − 5 , − 3 , − 1 , 0 , 1 , 2 , 4 , 5 , 6 , 7 , 9 , 11 , 15 , 27 } x-3 ~|~24 \implies \\
\implies ~x-~3\in~\begin{Bmatrix}
±1,±2,±3,±4,±6,±8,±12,±24
\end{Bmatrix} \implies \\
\implies ~x \in ~ \begin{Bmatrix}
−21,−9,−5,-3,−1,0,1,2,4,5,6,7,9,11,15,27
\end{Bmatrix} x − 3 ∣ 24 ⟹ ⟹ x − 3 ∈ { ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24 } ⟹ ⟹ x ∈ { − 21 , − 9 , − 5 , − 3 , − 1 , 0 , 1 , 2 , 4 , 5 , 6 , 7 , 9 , 11 , 15 , 27 }
Corresponding x values are
− 21 , − 9 , − 5 , − 3 , − 1 , 0 , 1 , 2 , 4 , 5 , 6 , 7 , 9 , 11 , 15 a n d 27 −21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15 ~and~ 27 − 21 , − 9 , − 5 , − 3 , − 1 , 0 , 1 , 2 , 4 , 5 , 6 , 7 , 9 , 11 , 15 an d 27
Comments