2. Find all integers x #= 3 such that x-3Ix3-3.
x3−3x−3= x3−27+24x−3= (x−3)(x2+3x+9)+24x−3= x2+3x+9⏟integer + 24x−3\dfrac {x^3-3}{x-3}=~ \dfrac {x^3-27+24}{x-3}= ~\dfrac {(x-3)(x²+3x+9)+24}{x-3}=~\underbrace{x²+3x+9}_{\text{integer}}~+~\dfrac {24}{x-3}x−3x3−3= x−3x3−27+24= x−3(x−3)(x2+3x+9)+24= integerx2+3x+9 + x−324
So, we are looking for values of x, such that:
x−3 ∣ 24 ⟹ ⟹ x− 3∈ {±1,±2,±3,±4,±6,±8,±12,±24} ⟹ ⟹ x∈ {−21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15,27}x-3 ~|~24 \implies \\ \implies ~x-~3\in~\begin{Bmatrix} ±1,±2,±3,±4,±6,±8,±12,±24 \end{Bmatrix} \implies \\ \implies ~x \in ~ \begin{Bmatrix} −21,−9,−5,-3,−1,0,1,2,4,5,6,7,9,11,15,27 \end{Bmatrix}x−3 ∣ 24⟹⟹ x− 3∈ {±1,±2,±3,±4,±6,±8,±12,±24}⟹⟹ x∈ {−21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15,27}
Corresponding x values are
−21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15 and 27−21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15 ~and~ 27−21,−9,−5,−3,−1,0,1,2,4,5,6,7,9,11,15 and 27
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments