Prove: Use R + 7L to determine if 23| N.
N=10R+LR+7L=7(10R+L)−69R=7(10R+L)−23⋅3RThus 23∣R+7L⇔23∣7(10R+L)⇔23∣10R+L=N(we use the fact that 7and 23are mutually prime)N=10R+L\\R+7L=7\left( 10R+L \right) -69R=7\left( 10R+L \right) -23\cdot 3R\\Thus\,\,23|R+7L\Leftrightarrow 23|7\left( 10R+L \right) \Leftrightarrow 23|10R+L=N\\\left( we\,\,use\,\,the\,\,fact\,\,that\,\,7and\,\,23are\,\,mutually\,\,prime \right)N=10R+LR+7L=7(10R+L)−69R=7(10R+L)−23⋅3RThus23∣R+7L⇔23∣7(10R+L)⇔23∣10R+L=N(weusethefactthat7and23aremutuallyprime)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments