Prove: Methods for divisibility by 13.
N=10L+RN=10L+R=10(L+4R)−39RHence 13∣N iff 13∣10(L+4R)Since 10and 13are mutually prime,we have13∣L+4RN=10L+R\\N=10L+R=10\left( L+4R \right) -39R\\Hence\,\,13|N\,\,iff\,\,13|10\left( L+4R \right) \\Since\,\,10 and\,\,13 are\,\,mutually\,\,prime, we\,\,have\\13|L+4RN=10L+RN=10L+R=10(L+4R)−39RHence13∣Niff13∣10(L+4R)Since10and13aremutuallyprime,wehave13∣L+4R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments