(1) (224−1)
Now a2−b2=(a−b)(a+b)
∴224−1=(212)2−12=(212−1)(212+1)=((26)2−12)(212+1)=(26−1)(26+1)(212+1)=(23−1)(23+1)(26+1)(212+1)=7×9×(26+1)(212+1)
∴224−1 has the divisor 7,9,26+1,212+1 other than the 1&224−1 .
∴224−1 is composite number.
(2) 216−1
216−1=(28)2−12=(28−1)(28+1)=(24−1)(24+1)(28+1)=(22−1)(22+1)(24+1)(28+1)=3×5×17×(28+1)
∴216−1 has the divisor other than 1 & 216−1 .
∴216−1 is composite number.
Comments