Question #297637

Show that 224-1 and 216-1 are composite. Hints:use expansion of (a2-b2)


1
Expert's answer
2022-02-16T11:10:20-0500

(1) (2241)\left(2^{24}-1\right)

Now a2b2=(ab)(a+b)a^{2}-b^{2}=(a-b)(a+b)

2241=(212)212=(2121)(212+1)=((26)212)(212+1)=(261)(26+1)(212+1)=(231)(23+1)(26+1)(212+1)=7×9×(26+1)(212+1)\begin{array}{rl} \therefore 2^{24}-1=\left(2^{12}\right)^{2}-1^{2}=\left(2^{12}-1\right)\left(2^{12}+1\right) \\ =\left(\left(2^{6}\right)^{2}-1^{2}\right)\left(2^{12}+1\right) \\ =\left(2^{6}-1\right)\left(2^{6}+1\right)\left(2^{12}+1\right) \\ =\left(2^{3}-1\right)\left(2^{3}+1\right)\left(2^{6}+1\right)\left(2^{12}+1\right) \\ = 7 \times 9 \times\left(2^{6}+1\right)\left(2^{12}+1\right) \end{array}

2241\therefore 2^{24}-1 has the divisor 7,9,26+1,212+17,9,2^{6}+1,2^{12}+1 other than the 1&22411 \& 2^{24}-1 .

2241\therefore 2^{24}-1 is composite number.

(2) 21612^{16}-1

2161=(28)212=(281)(28+1)=(241)(24+1)(28+1)=(221)(22+1)(24+1)(28+1)=3×5×17×(28+1)\begin{aligned} 2^{16}&-1=\left(2^{8}\right)^{2}-1^{2}=\left(2^{8}-1\right)\left(2^{8}+1\right) \\ &=\left(2^{4}-1\right)\left(2^{4}+1\right)\left(2^{8}+1\right) \\ &=\left(2^{2}-1\right)\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right) \\ &=3 \times 5 \times 17 \times\left(2^{8}+1\right) \end{aligned}

 

2161\therefore 2^{16}-1 has the divisor other than 1 & 21612^{16}-1 .

2161\therefore 2^{16}-1 is composite number.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS