Question #272614

Determine those odd primes p for which -3p=1 and those for which -


3p=-1

1
Expert's answer
2021-12-14T19:43:30-0500

 Fermat’s Little theorem states that if gcd(a,n)=1 then aψ(n)1(modn) The way we will use here to prove prove if a2(p1)1(mod3p) then gcd(3p,a)>1 is prove by  contradiction.  Let a2(p1)≢1(mod3p) and gcd(3p,a)=1 As gcd(3p,a)=1 then by Fermat’s Little theorem aψ(3p)1(mod3p)ai(3)ψ(p)1(mod3p)a2(p1)1(mod3p) a contradiction to a2(p1)≢1(mod3p) Hence g cd(3p,a)>1\begin{aligned} &\text { Fermat's Little theorem states that if } \operatorname{gcd}(a, n)=1 \text { then } a^{\psi(n)} \equiv 1 \quad(\bmod \mathrm{n}) \\ &\text { The way we will use here to prove prove if } a^{2(p-1)} \neq 1 \quad(\bmod 3 \mathrm{p}) \text { then } \operatorname{gcd}(3 p, a)>1 \text { is prove by } \\ &\text { contradiction. } \\ &\text { Let } a^{2(p-1)} \not \equiv 1 \quad(\bmod 3 \mathrm{p}) \text { and } \operatorname{gcd}(3 p, a)=1 \\ &\text { As } \operatorname{gcd}(3 p, a)=1 \text { then by Fermat's Little theorem } \\ &a^{\psi(3 p)} \equiv 1 \quad(\bmod 3 \mathrm{p}) \\ &\Rightarrow a^{i(3) \psi(p)} \equiv 1 \quad(\bmod 3 \mathrm{p}) \\ &\Rightarrow a^{2(p-1)} \equiv 1 \quad(\bmod 3 \mathrm{p}) \\ &\text { a contradiction to } a^{2(p-1)} \not \equiv 1 \quad(\bmod 3 \mathrm{p}) \\ &\text { Hence } g \mathrm{~cd}(3 p, a)>1 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS