solve the linear congruence 27x≡6(mod 53)
27x≡6mod 5327x\equiv 6\mod 5327x≡6mod53
We find gcd(27,53)=1(27, 53)=1(27,53)=1 , the linear congruence has a unique solution.
We multiply the linear congruence by 222 :
54x≡12mod 5354x\equiv 12 \mod 5354x≡12mod53
53x+x≡12mod 5353x+x\equiv 12\mod5353x+x≡12mod53
x≡12mod 53x\equiv 12\mod 53x≡12mod53
Answer: x≡12mod 53x\equiv 12\mod 53x≡12mod53.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments