Find the remainder when 7^21+49^21+343^21+2401^21 is divided by 7^20+1
1) "7^{21} + 49^{21} + 343^{21} + 2401{21} ="
"7^{21} + (7\\cdot7)^{21}+(7\\cdot7\\cdot7)^{21} + (7\\cdot7\\cdot7\\cdot7)^{21} ="
"7^{21} +{(7^{21})}^2+{(7^{21})}^3 + {(7^{21})}^4;"
2) "7^{21} = 7\\cdot(7^{20})=7\\cdot({7^{20} + 1})-7"
3) "Rem[7^{21} \/ (7^{20} + 1)] = -7"
We have represented 721 as 7⋅(720+1)−7 (look step 2)
7⋅(720+1)−7 mod (720+1) = -7 because
"\\frac{7\\cdot(7^{21}+1) -7}{7^{21}+1} = \\frac{7\\cdot(7^{21}+1)}{7^{21}+1}+\\frac{-7}{7^{21}+1} = 7+\\frac{-7}{7^{21}+1}"
where is -7 is our reminder.
For steps 4, 5, 6 We have to raise our reminder to a power.
4) "Rem[{(7^{21})}^2\/(7^{20} + 1)] = (-7)^{2}"
5) "Rem[{(7^{21})}^3\/(7^{20} + 1)] = (-7)^3"
6) "Rem[{(7^{21})}^4\/(7^{20} + 1)] = (-7)^4"
"Answer: -7+(-7)^2+(-7)^3+(-7)^4 = 2100"
Comments
Leave a comment