Evaluate kronecker symbol (11/24)
If n=p1...pk,n=p_1...p_k,n=p1...pk, then (dn)=(dp1)...(dp2)(\dfrac{d}{n})=(\dfrac{d}{p_1})...(\dfrac{d}{p_2})(nd)=(p1d)...(p2d)
24=2⋅2⋅2⋅324=2\cdot2\cdot2\cdot324=2⋅2⋅2⋅3
11≡3(mod 8)11\equiv3(mod\ 8)11≡3(mod 8) Then (112)=−1(\dfrac{11}{2})=-1(211)=−1
d(113)d(\dfrac{11}{3})d(311) is the Legendre symbol: d(113)=−1d(\dfrac{11}{3})=-1d(311)=−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments