you choose one of the five-letter passwords producted by using the A,B,C,D and E,each letter should be used exactly once .what is the maximum number of password that do not have a letter in common with the password you chose (the same letter is not in the same place?)
Hint: if the question was asked for three-letter passwords created using the letters,A,B,and C the answer would be 2 :let the password you choose be ABC .passwords without a common letter:ABC
"Solution: ~Derangement~ of ~n~ distinct~ letters\\\\=n!(1-\\frac{1}{1!}+\\frac{1}{2!}-\\frac{1}{3!}+\\frac{1}{4!}-\\frac{1}{5!}+.....+\\frac{(-1)^n}{n!})\n\\\\Here, ~We~ have~ given ~5~ letters~ as ~A,B,C,D,E\n\\\\Then ~derangement ~of~ 5~ distinct ~letters ~as \n\\\\=5!(1-\\frac{1}{1!}+\\frac{1}{2!}-\\frac{1}{3!}+\\frac{1}{4!}-\\frac{1}{5!})\n\\\\=5!(\\frac{1}{2!}-\\frac{1}{3!}+\\frac{1}{4!}-\\frac{1}{5!})\n\\\\=(\\frac{5!}{2!}-\\frac{5!}{3!}+\\frac{5!}{4!}-\\frac{5!}{5!})\n\\\\=(\\frac{5.4.3.2.1}{2.1}-\\frac{5.4.3.2.1}{3.2.1}+\\frac{5.4.3.2.1}{4.3.2.1}-\\frac{5.4.3.2.1}{5.4.3.2.1})\n\\\\=[(5.4.3)-(5.4)+(5)-1]\n\\\\=60-20+5-1\n\\\\=65-21\n\\\\=44\n\\\\Hence, ~44~ is~ the ~maximum ~number~ of~ password ~that~ do~ not~ have~ a ~letter ~\\\\in~ common ~with ~the ~password ~you ~chose."
Comments
Leave a comment