Let us denote Sn = an + bn + cn for arbitrary numbers a, b, c. It is known that S1 = 8, 5, S2 = 74, 25, S3 = 639, 625 for some values of a, b, c. What is the largest possible value of S2811 — S810S812?
"S_n = a^n + b^n +c^n"
"S_{811}^2-S_{810}\\cdot S_{812}=(a^{811}+b^{811}+c^{811})^2-(a^{810}+b^{810}+c^{810})(a^{812}+b^{812}+c^{812})=a^{1622}+b^{1622}+c^{1622}+2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{1622}-b^{1622}-c^{1622}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812})=2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812})"
"S_1=8.5,\\ S_2=74.25, \\ S_3=639.625:"
"\\begin{cases} a+b+c=8.5\\\\a^2+b^2+c^2=74.25\\\\a^3+b^3+c^3=639.625\n\\end{cases}"
Solving the system of equations:
"a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=8.5^2-2(ab+bc+ac)"
and
"a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-(ab+bc+ac))+3abc="
"=8.5(8.5^2-2(ab+bc+ac)-(ab+bc+ac))+3abc="
"=8.5(8.5^2-3(ab+bc+ac))+3abc"
Then we have
"\\begin{cases} a+b+c=8.5\\\\8.5^2-2(ab+bc+ac)=74.25\\\\8.5(8.5^2-3(ab+bc+ac))+3abc=639.625\n\\end{cases} \\implies"
"ab+bc+ac=-1"
"3abc=639.625-8.5(8.5^2+3)=0"
Since "abc=0" lets assume "a=0"
Then we have
"\\begin{cases}b+c=8.5\\\\b^2+c^2=74.25\\end{cases}\\implies \\begin{cases}b=8.5-c\\\\(8.5-c)^2+c^2=74.25\\end{cases}"
"c^2-8.5c-1=0\\implies c=\\frac{17\\pm\\sqrt{305}}{4}"
Then "b=8.5-c=\\frac{17}{2}-\\frac{17\\pm\\sqrt{305}}{4}=\\frac{17\\mp\\sqrt{305}}{4}"
Since the system is symmetric there is one solution:
"a=0, \\ b = \\frac{17-\\sqrt{305}}{4}, \\ c=\\frac{17+\\sqrt{305}}{4}"
Thus
"S_{811}^2-S_{810}\\cdot S_{812}=2(\\frac{17-\\sqrt{305}}{4})^{811}(\\frac{17+\\sqrt{305}}{4})^{811}-(\\frac{17-\\sqrt{305}}{4})^{810}(\\frac{17+\\sqrt{305}}{4})^{812}-(\\frac{17+\\sqrt{305}}{4})^{810}(\\frac{17-\\sqrt{305}}{4})^{812}=-(\\frac{17-\\sqrt{305}}{4})^{810}(\\frac{17+\\sqrt{305}}{4})^{810}((\\frac{17-\\sqrt{305}}{4})^2+2\\frac{17-\\sqrt{305}}{4}\\frac{17+\\sqrt{305}}{4}+(\\frac{17+\\sqrt{305}}{4})^2)=-(\\frac{289-305}{16})^{811}\\cdot\\frac{289}{4}=-(-1)^{811}\\cdot\\frac{289}{4}=72.25"
Answer: 72.25
Comments
Leave a comment