Question #146067

Let us denote Sn = an + bn + cn for arbitrary numbers a, b, c. It is known that S1 = 8, 5, S2 = 74, 25, S3 = 639, 625 for some values of a, b, c. What is the largest possible value of S2811 — S810S812


1
Expert's answer
2020-12-02T18:06:19-0500

Sn=an+bn+cnS_n = a^n + b^n +c^n

S8112S810S812=(a811+b811+c811)2(a810+b810+c810)(a812+b812+c812)=a1622+b1622+c1622+2a811b811+2a811c811+2b811c811a1622b1622c1622a810(b812+c812)b810(a812+c812)c810(a812+b812)=2a811b811+2a811c811+2b811c811a810(b812+c812)b810(a812+c812)c810(a812+b812)S_{811}^2-S_{810}\cdot S_{812}=(a^{811}+b^{811}+c^{811})^2-(a^{810}+b^{810}+c^{810})(a^{812}+b^{812}+c^{812})=a^{1622}+b^{1622}+c^{1622}+2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{1622}-b^{1622}-c^{1622}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812})=2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812})

S1=8.5, S2=74.25, S3=639.625:S_1=8.5,\ S_2=74.25, \ S_3=639.625:

{a+b+c=8.5a2+b2+c2=74.25a3+b3+c3=639.625\begin{cases} a+b+c=8.5\\a^2+b^2+c^2=74.25\\a^3+b^3+c^3=639.625 \end{cases}

Solving the system of equations:

a2+b2+c2=(a+b+c)22(ab+bc+ac)=8.522(ab+bc+ac)a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=8.5^2-2(ab+bc+ac)

and

a3+b3+c3=(a+b+c)(a2+b2+c2(ab+bc+ac))+3abc=a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-(ab+bc+ac))+3abc=

=8.5(8.522(ab+bc+ac)(ab+bc+ac))+3abc==8.5(8.5^2-2(ab+bc+ac)-(ab+bc+ac))+3abc=

=8.5(8.523(ab+bc+ac))+3abc=8.5(8.5^2-3(ab+bc+ac))+3abc

Then we have

{a+b+c=8.58.522(ab+bc+ac)=74.258.5(8.523(ab+bc+ac))+3abc=639.625    \begin{cases} a+b+c=8.5\\8.5^2-2(ab+bc+ac)=74.25\\8.5(8.5^2-3(ab+bc+ac))+3abc=639.625 \end{cases} \implies

ab+bc+ac=1ab+bc+ac=-1

3abc=639.6258.5(8.52+3)=03abc=639.625-8.5(8.5^2+3)=0

Since abc=0abc=0 lets assume a=0a=0

Then we have

{b+c=8.5b2+c2=74.25    {b=8.5c(8.5c)2+c2=74.25\begin{cases}b+c=8.5\\b^2+c^2=74.25\end{cases}\implies \begin{cases}b=8.5-c\\(8.5-c)^2+c^2=74.25\end{cases}

c28.5c1=0    c=17±3054c^2-8.5c-1=0\implies c=\frac{17\pm\sqrt{305}}{4}

Then b=8.5c=17217±3054=173054b=8.5-c=\frac{17}{2}-\frac{17\pm\sqrt{305}}{4}=\frac{17\mp\sqrt{305}}{4}

Since the system is symmetric there is one solution:

a=0, b=173054, c=17+3054a=0, \ b = \frac{17-\sqrt{305}}{4}, \ c=\frac{17+\sqrt{305}}{4}

Thus

S8112S810S812=2(173054)811(17+3054)811(173054)810(17+3054)812(17+3054)810(173054)812=(173054)810(17+3054)810((173054)2+217305417+3054+(17+3054)2)=(28930516)8112894=(1)8112894=72.25S_{811}^2-S_{810}\cdot S_{812}=2(\frac{17-\sqrt{305}}{4})^{811}(\frac{17+\sqrt{305}}{4})^{811}-(\frac{17-\sqrt{305}}{4})^{810}(\frac{17+\sqrt{305}}{4})^{812}-(\frac{17+\sqrt{305}}{4})^{810}(\frac{17-\sqrt{305}}{4})^{812}=-(\frac{17-\sqrt{305}}{4})^{810}(\frac{17+\sqrt{305}}{4})^{810}((\frac{17-\sqrt{305}}{4})^2+2\frac{17-\sqrt{305}}{4}\frac{17+\sqrt{305}}{4}+(\frac{17+\sqrt{305}}{4})^2)=-(\frac{289-305}{16})^{811}\cdot\frac{289}{4}=-(-1)^{811}\cdot\frac{289}{4}=72.25


Answer: 72.25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS