S n = a n + b n + c n S_n = a^n + b^n +c^n S n = a n + b n + c n
S 811 2 − S 810 ⋅ S 812 = ( a 811 + b 811 + c 811 ) 2 − ( a 810 + b 810 + c 810 ) ( a 812 + b 812 + c 812 ) = a 1622 + b 1622 + c 1622 + 2 a 811 b 811 + 2 a 811 c 811 + 2 b 811 c 811 − a 1622 − b 1622 − c 1622 − a 810 ( b 812 + c 812 ) − b 810 ( a 812 + c 812 ) − c 810 ( a 812 + b 812 ) = 2 a 811 b 811 + 2 a 811 c 811 + 2 b 811 c 811 − a 810 ( b 812 + c 812 ) − b 810 ( a 812 + c 812 ) − c 810 ( a 812 + b 812 ) S_{811}^2-S_{810}\cdot S_{812}=(a^{811}+b^{811}+c^{811})^2-(a^{810}+b^{810}+c^{810})(a^{812}+b^{812}+c^{812})=a^{1622}+b^{1622}+c^{1622}+2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{1622}-b^{1622}-c^{1622}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812})=2a^{811}b^{811}+2a^{811}c^{811}+2b^{811}c^{811}-a^{810}(b^{812}+c^{812})-b^{810}(a^{812}+c^{812})-c^{810}(a^{812}+b^{812}) S 811 2 − S 810 ⋅ S 812 = ( a 811 + b 811 + c 811 ) 2 − ( a 810 + b 810 + c 810 ) ( a 812 + b 812 + c 812 ) = a 1622 + b 1622 + c 1622 + 2 a 811 b 811 + 2 a 811 c 811 + 2 b 811 c 811 − a 1622 − b 1622 − c 1622 − a 810 ( b 812 + c 812 ) − b 810 ( a 812 + c 812 ) − c 810 ( a 812 + b 812 ) = 2 a 811 b 811 + 2 a 811 c 811 + 2 b 811 c 811 − a 810 ( b 812 + c 812 ) − b 810 ( a 812 + c 812 ) − c 810 ( a 812 + b 812 )
S 1 = 8.5 , S 2 = 74.25 , S 3 = 639.625 : S_1=8.5,\ S_2=74.25, \ S_3=639.625: S 1 = 8.5 , S 2 = 74.25 , S 3 = 639.625 :
{ a + b + c = 8.5 a 2 + b 2 + c 2 = 74.25 a 3 + b 3 + c 3 = 639.625 \begin{cases} a+b+c=8.5\\a^2+b^2+c^2=74.25\\a^3+b^3+c^3=639.625
\end{cases} ⎩ ⎨ ⎧ a + b + c = 8.5 a 2 + b 2 + c 2 = 74.25 a 3 + b 3 + c 3 = 639.625
Solving the system of equations:
a 2 + b 2 + c 2 = ( a + b + c ) 2 − 2 ( a b + b c + a c ) = 8. 5 2 − 2 ( a b + b c + a c ) a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=8.5^2-2(ab+bc+ac) a 2 + b 2 + c 2 = ( a + b + c ) 2 − 2 ( ab + b c + a c ) = 8. 5 2 − 2 ( ab + b c + a c )
and
a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 − ( a b + b c + a c ) ) + 3 a b c = a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-(ab+bc+ac))+3abc= a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 − ( ab + b c + a c )) + 3 ab c =
= 8.5 ( 8. 5 2 − 2 ( a b + b c + a c ) − ( a b + b c + a c ) ) + 3 a b c = =8.5(8.5^2-2(ab+bc+ac)-(ab+bc+ac))+3abc= = 8.5 ( 8. 5 2 − 2 ( ab + b c + a c ) − ( ab + b c + a c )) + 3 ab c =
= 8.5 ( 8. 5 2 − 3 ( a b + b c + a c ) ) + 3 a b c =8.5(8.5^2-3(ab+bc+ac))+3abc = 8.5 ( 8. 5 2 − 3 ( ab + b c + a c )) + 3 ab c
Then we have
{ a + b + c = 8.5 8. 5 2 − 2 ( a b + b c + a c ) = 74.25 8.5 ( 8. 5 2 − 3 ( a b + b c + a c ) ) + 3 a b c = 639.625 ⟹ \begin{cases} a+b+c=8.5\\8.5^2-2(ab+bc+ac)=74.25\\8.5(8.5^2-3(ab+bc+ac))+3abc=639.625
\end{cases} \implies ⎩ ⎨ ⎧ a + b + c = 8.5 8. 5 2 − 2 ( ab + b c + a c ) = 74.25 8.5 ( 8. 5 2 − 3 ( ab + b c + a c )) + 3 ab c = 639.625 ⟹
a b + b c + a c = − 1 ab+bc+ac=-1 ab + b c + a c = − 1
3 a b c = 639.625 − 8.5 ( 8. 5 2 + 3 ) = 0 3abc=639.625-8.5(8.5^2+3)=0 3 ab c = 639.625 − 8.5 ( 8. 5 2 + 3 ) = 0
Since a b c = 0 abc=0 ab c = 0 lets assume a = 0 a=0 a = 0
Then we have
{ b + c = 8.5 b 2 + c 2 = 74.25 ⟹ { b = 8.5 − c ( 8.5 − c ) 2 + c 2 = 74.25 \begin{cases}b+c=8.5\\b^2+c^2=74.25\end{cases}\implies \begin{cases}b=8.5-c\\(8.5-c)^2+c^2=74.25\end{cases} { b + c = 8.5 b 2 + c 2 = 74.25 ⟹ { b = 8.5 − c ( 8.5 − c ) 2 + c 2 = 74.25
c 2 − 8.5 c − 1 = 0 ⟹ c = 17 ± 305 4 c^2-8.5c-1=0\implies c=\frac{17\pm\sqrt{305}}{4} c 2 − 8.5 c − 1 = 0 ⟹ c = 4 17 ± 305
Then b = 8.5 − c = 17 2 − 17 ± 305 4 = 17 ∓ 305 4 b=8.5-c=\frac{17}{2}-\frac{17\pm\sqrt{305}}{4}=\frac{17\mp\sqrt{305}}{4} b = 8.5 − c = 2 17 − 4 17 ± 305 = 4 17 ∓ 305
Since the system is symmetric there is one solution:
a = 0 , b = 17 − 305 4 , c = 17 + 305 4 a=0, \ b = \frac{17-\sqrt{305}}{4}, \ c=\frac{17+\sqrt{305}}{4} a = 0 , b = 4 17 − 305 , c = 4 17 + 305
Thus
S 811 2 − S 810 ⋅ S 812 = 2 ( 17 − 305 4 ) 811 ( 17 + 305 4 ) 811 − ( 17 − 305 4 ) 810 ( 17 + 305 4 ) 812 − ( 17 + 305 4 ) 810 ( 17 − 305 4 ) 812 = − ( 17 − 305 4 ) 810 ( 17 + 305 4 ) 810 ( ( 17 − 305 4 ) 2 + 2 17 − 305 4 17 + 305 4 + ( 17 + 305 4 ) 2 ) = − ( 289 − 305 16 ) 811 ⋅ 289 4 = − ( − 1 ) 811 ⋅ 289 4 = 72.25 S_{811}^2-S_{810}\cdot S_{812}=2(\frac{17-\sqrt{305}}{4})^{811}(\frac{17+\sqrt{305}}{4})^{811}-(\frac{17-\sqrt{305}}{4})^{810}(\frac{17+\sqrt{305}}{4})^{812}-(\frac{17+\sqrt{305}}{4})^{810}(\frac{17-\sqrt{305}}{4})^{812}=-(\frac{17-\sqrt{305}}{4})^{810}(\frac{17+\sqrt{305}}{4})^{810}((\frac{17-\sqrt{305}}{4})^2+2\frac{17-\sqrt{305}}{4}\frac{17+\sqrt{305}}{4}+(\frac{17+\sqrt{305}}{4})^2)=-(\frac{289-305}{16})^{811}\cdot\frac{289}{4}=-(-1)^{811}\cdot\frac{289}{4}=72.25 S 811 2 − S 810 ⋅ S 812 = 2 ( 4 17 − 305 ) 811 ( 4 17 + 305 ) 811 − ( 4 17 − 305 ) 810 ( 4 17 + 305 ) 812 − ( 4 17 + 305 ) 810 ( 4 17 − 305 ) 812 = − ( 4 17 − 305 ) 810 ( 4 17 + 305 ) 810 (( 4 17 − 305 ) 2 + 2 4 17 − 305 4 17 + 305 + ( 4 17 + 305 ) 2 ) = − ( 16 289 − 305 ) 811 ⋅ 4 289 = − ( − 1 ) 811 ⋅ 4 289 = 72.25
Answer: 72.25
Comments