Question #117123
Show that the sequence 〖{a〗_n} is a solution of the recurrence relation a_n=a_(n-1)+〖2a〗_(n-2)+2n-9 if
(i)〖 a〗_n=-n+2
(ii) a_n=〖5(-1)〗^n-n+2
(iii) 〖3(-1)〗^n+2^n-n+2
(iv)〖7.2〗^n-n+2
1
Expert's answer
2020-06-01T18:01:27-0400

(i) Given an=n+2.a_n=-n+2. Prove


an=an1+2an2+2n9,n2a_n=a_{n-1}+2a_{n-2}+2n-9,n\geq2an1=(n1)+2=n+3a_{n-1}=-(n-1)+2=-n+3an2=(n2)+2=n+4a_{n-2}=-(n-2)+2=-n+4

an1+2an2+2n9=n+32n+8+2n9=a_{n-1}+2a_{n-2}+2n-9=-n+3-2n+8+2n-9==n+2=an,n2=-n+2=a_n,n\geq2

(ii) Given an=5(1)nn+2.a_n=5(-1)^n-n+2. Prove


an=an1+2an2+2n9,n2a_n=a_{n-1}+2a_{n-2}+2n-9,n\geq2an1=5(1)n1(n1)+2=5(1)nn+3a_{n-1}=5(-1)^{n-1}-(n-1)+2=-5(-1)^n-n+3an2=5(1)n2(n2)+2=5(1)nn+4a_{n-2}=5(-1)^{n-2}-(n-2)+2=5(-1)^n-n+4

an1+2an2+2n9=5(1)nn+3+a_{n-1}+2a_{n-2}+2n-9=-5(-1)^n-n+3++25(1)n2n+8+2n9=+2\cdot 5(-1)^n-2n+8+2n-9==5(1)nn++2=an=5(-1)^n-n++2=a_n

(iii) Given an=3(1)n+2nn+2.a_n=3(-1)^n+2^n-n+2. Prove


an=an1+2an2+2n9,n2a_n=a_{n-1}+2a_{n-2}+2n-9,n\geq2an1=3(1)n1+2n1(n1)+2=a_{n-1}=3(-1)^{n-1}+2^{n-1}-(n-1)+2==3(1)n+2n1n+3=-3(-1)^n+2^{n-1}-n+3an2=3(1)n2+2n2(n2)+2=a_{n-2}=3(-1)^{n-2}+2^{n-2}-(n-2)+2==3(1)n+2n2n+4==3(-1)^n+2^{n-2}-n+4=

an1+2an2+2n9=a_{n-1}+2a_{n-2}+2n-9==3(1)n+2n1n+3+=-3(-1)^n+2^{n-1}-n+3++23(1)n+21+n22n+8+2n9=+2\cdot3(-1)^n+2^{1+n-2}-2n+8+2n-9==3(1)n+2nn+2=an=3(-1)^n+2^n-n+2=a_n

(iv) Given an=72nn+2.a_n=7\cdot 2^n-n+2. Prove


an=an1+2an2+2n9,n2a_n=a_{n-1}+2a_{n-2}+2n-9,n\geq2an1=72n1(n1)+2=72n1n+3a_{n-1}=7\cdot 2^{n-1}-(n-1)+2=7\cdot 2^{n-1}-n+3an2=72n2(n2)+2=72n2n+4a_{n-2}=7\cdot 2^{n-2}-(n-2)+2=7\cdot 2^{n-2}-n+4

an1+2an2+2n9=a_{n-1}+2a_{n-2}+2n-9==72n1n+3+=7\cdot 2^{n-1}-n+3++272n22n+8+2n9=+2\cdot7\cdot 2^{n-2}-2n+8+2n-9==72nn+2=an=7\cdot 2^n-n+2=a_n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS