(i) Given an=−n+2. Prove
an=an−1+2an−2+2n−9,n≥2an−1=−(n−1)+2=−n+3an−2=−(n−2)+2=−n+4
an−1+2an−2+2n−9=−n+3−2n+8+2n−9==−n+2=an,n≥2 (ii) Given an=5(−1)n−n+2. Prove
an=an−1+2an−2+2n−9,n≥2an−1=5(−1)n−1−(n−1)+2=−5(−1)n−n+3an−2=5(−1)n−2−(n−2)+2=5(−1)n−n+4
an−1+2an−2+2n−9=−5(−1)n−n+3++2⋅5(−1)n−2n+8+2n−9==5(−1)n−n++2=an
(iii) Given an=3(−1)n+2n−n+2. Prove
an=an−1+2an−2+2n−9,n≥2an−1=3(−1)n−1+2n−1−(n−1)+2==−3(−1)n+2n−1−n+3an−2=3(−1)n−2+2n−2−(n−2)+2==3(−1)n+2n−2−n+4=
an−1+2an−2+2n−9==−3(−1)n+2n−1−n+3++2⋅3(−1)n+21+n−2−2n+8+2n−9==3(−1)n+2n−n+2=an (iv) Given an=7⋅2n−n+2. Prove
an=an−1+2an−2+2n−9,n≥2an−1=7⋅2n−1−(n−1)+2=7⋅2n−1−n+3an−2=7⋅2n−2−(n−2)+2=7⋅2n−2−n+4
an−1+2an−2+2n−9==7⋅2n−1−n+3++2⋅7⋅2n−2−2n+8+2n−9==7⋅2n−n+2=an
Comments