Solution:
We are going to evaluate the integral bounded by the region D.
D is the given region bounded by
X Y = a , X Y = b , X Y 1.4 = c a n d X Y 1.4 = d XY =a, XY = b, XY^{1.4} = c \space and \space XY^ {1.4} = d X Y = a , X Y = b , X Y 1.4 = c an d X Y 1.4 = d where 0>a>b and 0<c<d.
Choose
X Y = U a n d X Y 1.4 = V XY = U \space and \space XY^{1.4} = V X Y = U an d X Y 1.4 = V ( Here, U = a , U = b a n d V = c a n d V = d ) U = a, U = b \space and \space V= c \space and \space V = d) U = a , U = b an d V = c an d V = d )
Now, divide V by U
V U = X Y 1.4 X Y = Y 0.4 \frac {V}{U} =\frac {XY^{1.4}} {XY} = Y^{0.4} U V = X Y X Y 1.4 = Y 0.4 We can write this equation for Y,
Y = ( V U ) 10 4 = ( V U ) 2.5 Y = (\frac {V}{U})^{\frac {10} {4}} = (\frac {V}{U})^{2.5} Y = ( U V ) 4 10 = ( U V ) 2.5
Y 10 = ( V U ) 25 Y^{10} = (\frac{V}{U})^{25} Y 10 = ( U V ) 25 Now we can solve for X,
X = U V = U ( V U ) 2.5 = U × U 2.5 V 2.5 = U 3.5 V 2.5 X = \frac {U}{V} = \frac {U}{(\frac {V} {U})^{2.5}} = \frac {U \times U^{2.5}} {V^{2.5}} = \frac {U^{3.5}}{V^{2.5}} X = V U = ( U V ) 2.5 U = V 2.5 U × U 2.5 = V 2.5 U 3.5
X 8 = ( U 3.5 V 2.5 ) 8 = U 28 V 20 X^8 = (\frac {U^{3.5}}{V^{2.5}})^ 8 = \frac {U^{28}}{V^{20}} X 8 = ( V 2.5 U 3.5 ) 8 = V 20 U 28
Now,
X 8 × Y 10 = U 28 V 20 × V 25 U 25 = U 3 V 5 X^8 \times Y^{10} = \frac { U^{28}} {V^{20}} \times \frac {V^{25}}{U^{25}}= U^3 V^5 X 8 × Y 10 = V 20 U 28 × U 25 V 25 = U 3 V 5
d A = J d v × d u dA = J \space dv \times du d A = J d v × d u
Here,
J = ∂ ( X , Y ) ∂ ( U , V ) = ∣ ∂ X ∂ U ∂ X ∂ V ∂ Y ∂ U ∂ Y ∂ V ∣ = 8.75 V − 6.25 V = 2.5 V J = \frac {\partial (X,Y)}{\partial (U,V)} =\begin{vmatrix}
\frac {\partial X}{\partial U} & \frac {\partial X}{\partial V} \\
\frac {\partial Y}{\partial U} & \frac {\partial Y}{\partial V}
\end{vmatrix} = \frac {8.75}{V} - \frac {6.25}{V} = \frac {2.5} {V} J = ∂ ( U , V ) ∂ ( X , Y ) = ∣ ∣ ∂ U ∂ X ∂ U ∂ Y ∂ V ∂ X ∂ V ∂ Y ∣ ∣ = V 8.75 − V 6.25 = V 2.5
∬ D X 8 Y 10 d A = ∫ U = a U = b ∫ V = c V = d U 3 V 5 5 2 V d V d U \iint _D X^8 Y^{10} dA = \int_{U=a}^{U =b} \int _{V=c} ^{V=d} U^3 V^5 \frac {5}{2V} dV dU ∬ D X 8 Y 10 d A = ∫ U = a U = b ∫ V = c V = d U 3 V 5 2 V 5 d V d U
=
= 5 2 ∫ U = a U = b ∫ V = c V = d U 3 V 4 d V d U = 5 2 ∫ U = a U = b U 3 [ V 5 5 ] c d d U = \frac {5}{2} \int_{U=a}^{U =b} \int _{V=c} ^{V=d} U^3 V^4 dV dU = \frac {5}{2} \int _{U=a} ^{U=b} U^3 [\frac {V^5}{5}]_c^ d dU = 2 5 ∫ U = a U = b ∫ V = c V = d U 3 V 4 d V d U = 2 5 ∫ U = a U = b U 3 [ 5 V 5 ] c d d U
= 1 2 ( d 5 − c 5 ) [ U 4 4 ] a b = 1 8 ( b 4 − a 4 ) ( d 5 − c 5 ) =\frac {1}{2} (d^5 - c^5 ) [\frac {U^4}{4}]_a^b = \frac {1 }{8} (b^4 - a^4) (d^5 - c^5) = 2 1 ( d 5 − c 5 ) [ 4 U 4 ] a b = 8 1 ( b 4 − a 4 ) ( d 5 − c 5 )
Answer:
Required Integral =
1 8 ( b 4 − a 4 ) ( d 5 − c 5 ) \frac {1 }{8} (b^4 - a^4) (d^5 - c^5) 8 1 ( b 4 − a 4 ) ( d 5 − c 5 )
Comments