Solution:
We are going to evaluate the integral bounded by the region D.
D is the given region bounded by
"XY =a, XY = b, XY^{1.4} = c \\space and \\space XY^ {1.4} = d"where 0>a>b and 0<c<d.
Choose
"XY = U \\space and \\space XY^{1.4} = V"( Here, "U = a, U = b \\space and \\space V= c \\space and \\space V = d)"
Now, divide V by U
We can write this equation for Y,
"Y^{10} = (\\frac{V}{U})^{25}"
Now we can solve for X,
"X^8 = (\\frac {U^{3.5}}{V^{2.5}})^ 8 = \\frac {U^{28}}{V^{20}}"
Now,
"X^8 \\times Y^{10} = \\frac { U^{28}} {V^{20}} \\times \\frac {V^{25}}{U^{25}}= U^3 V^5"
"dA = J \\space dv \\times du"
Here,
"J = \\frac {\\partial (X,Y)}{\\partial (U,V)} =\\begin{vmatrix}\n \\frac {\\partial X}{\\partial U} & \\frac {\\partial X}{\\partial V} \\\\\n \\frac {\\partial Y}{\\partial U} & \\frac {\\partial Y}{\\partial V}\n\\end{vmatrix} = \\frac {8.75}{V} - \\frac {6.25}{V} = \\frac {2.5} {V}"
"\\iint _D X^8 Y^{10} dA = \\int_{U=a}^{U =b} \\int _{V=c} ^{V=d} U^3 V^5 \\frac {5}{2V} dV dU"
=
"= \\frac {5}{2} \\int_{U=a}^{U =b} \\int _{V=c} ^{V=d} U^3 V^4 dV dU = \\frac {5}{2} \\int _{U=a} ^{U=b} U^3 [\\frac {V^5}{5}]_c^ d dU"
"=\\frac {1}{2} (d^5 - c^5 ) [\\frac {U^4}{4}]_a^b = \\frac {1 }{8} (b^4 - a^4) (d^5 - c^5)"
Answer:
Required Integral =
"\\frac {1 }{8} (b^4 - a^4) (d^5 - c^5)"
Comments
Leave a comment