Question #97153
Evaluate the following integral if D is the region bounded by xy=a, xy=b, xy^1.4=c and xy^1.4=d, where 0< a < b and 0< c < d. ∫ ∫ D x^8y^10 dA. Note: D should be at the bottom of the second integral, it is not part of the function.
1
Expert's answer
2019-10-24T08:53:17-0400

Solution:


We are going to evaluate the integral bounded by the region D.



D is the given region bounded by

XY=a,XY=b,XY1.4=c and XY1.4=dXY =a, XY = b, XY^{1.4} = c \space and \space XY^ {1.4} = d

where 0>a>b and 0<c<d.


Choose

XY=U and XY1.4=VXY = U \space and \space XY^{1.4} = V

( Here, U=a,U=b and V=c and V=d)U = a, U = b \space and \space V= c \space and \space V = d)


Now, divide V by U



VU=XY1.4XY=Y0.4\frac {V}{U} =\frac {XY^{1.4}} {XY} = Y^{0.4}

We can write this equation for Y,


Y=(VU)104=(VU)2.5Y = (\frac {V}{U})^{\frac {10} {4}} = (\frac {V}{U})^{2.5}

Y10=(VU)25Y^{10} = (\frac{V}{U})^{25}

Now we can solve for X,



X=UV=U(VU)2.5=U×U2.5V2.5=U3.5V2.5X = \frac {U}{V} = \frac {U}{(\frac {V} {U})^{2.5}} = \frac {U \times U^{2.5}} {V^{2.5}} = \frac {U^{3.5}}{V^{2.5}}

X8=(U3.5V2.5)8=U28V20X^8 = (\frac {U^{3.5}}{V^{2.5}})^ 8 = \frac {U^{28}}{V^{20}}

Now,


X8×Y10=U28V20×V25U25=U3V5X^8 \times Y^{10} = \frac { U^{28}} {V^{20}} \times \frac {V^{25}}{U^{25}}= U^3 V^5

dA=J dv×dudA = J \space dv \times du

Here,

J=(X,Y)(U,V)=XUXVYUYV=8.75V6.25V=2.5VJ = \frac {\partial (X,Y)}{\partial (U,V)} =\begin{vmatrix} \frac {\partial X}{\partial U} & \frac {\partial X}{\partial V} \\ \frac {\partial Y}{\partial U} & \frac {\partial Y}{\partial V} \end{vmatrix} = \frac {8.75}{V} - \frac {6.25}{V} = \frac {2.5} {V}


DX8Y10dA=U=aU=bV=cV=dU3V552VdVdU\iint _D X^8 Y^{10} dA = \int_{U=a}^{U =b} \int _{V=c} ^{V=d} U^3 V^5 \frac {5}{2V} dV dU


=

=52U=aU=bV=cV=dU3V4dVdU=52U=aU=bU3[V55]cddU= \frac {5}{2} \int_{U=a}^{U =b} \int _{V=c} ^{V=d} U^3 V^4 dV dU = \frac {5}{2} \int _{U=a} ^{U=b} U^3 [\frac {V^5}{5}]_c^ d dU


=12(d5c5)[U44]ab=18(b4a4)(d5c5)=\frac {1}{2} (d^5 - c^5 ) [\frac {U^4}{4}]_a^b = \frac {1 }{8} (b^4 - a^4) (d^5 - c^5)

Answer:

Required Integral =

18(b4a4)(d5c5)\frac {1 }{8} (b^4 - a^4) (d^5 - c^5)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS