Question #97149
Show that

∫ₐᵇ (ln x)/(x) dx = (1/2) ln ab ln(a/b)
1
Expert's answer
2019-11-01T12:21:59-0400

abln(x)xdx\intop ^b_a \frac {ln(x)} x dx

Find

ln(x)xdx=ln(x)d(ln(x))=[ln(x)=t]=tdt=t22+C=ln2(x)2+C\int \frac {ln(x)} x dx = \int ln(x) d(ln(x))=[ln(x)=t]=\int t dt = \frac {t^2} 2 + C = \frac {ln^2(x)} 2 + C

than

abln(x)xdx=ln2(x)2ab=ln2(b)2ln2(a)2=12(ln2(b)ln2(a))=12(ln(b)ln(a))(ln(b)+ln(a))=12(ln(ba)ln(ab))\intop ^b_a \frac {ln(x)} x dx = \frac {ln^2(x)} 2|^b _a = \frac {ln^2(b)} 2 - \frac {ln^2(a)} 2 = \frac 1 2 (ln^2 (b) - ln^2(a)) = \frac 1 2 (ln(b) - ln(a))(ln(b) +ln(a)) = \frac 1 2 (ln (\frac b a)ln(ab))



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS