∫abln(x)xdx\intop ^b_a \frac {ln(x)} x dx∫abxln(x)dx
Find
∫ln(x)xdx=∫ln(x)d(ln(x))=[ln(x)=t]=∫tdt=t22+C=ln2(x)2+C\int \frac {ln(x)} x dx = \int ln(x) d(ln(x))=[ln(x)=t]=\int t dt = \frac {t^2} 2 + C = \frac {ln^2(x)} 2 + C∫xln(x)dx=∫ln(x)d(ln(x))=[ln(x)=t]=∫tdt=2t2+C=2ln2(x)+C
than
∫abln(x)xdx=ln2(x)2∣ab=ln2(b)2−ln2(a)2=12(ln2(b)−ln2(a))=12(ln(b)−ln(a))(ln(b)+ln(a))=12(ln(ba)ln(ab))\intop ^b_a \frac {ln(x)} x dx = \frac {ln^2(x)} 2|^b _a = \frac {ln^2(b)} 2 - \frac {ln^2(a)} 2 = \frac 1 2 (ln^2 (b) - ln^2(a)) = \frac 1 2 (ln(b) - ln(a))(ln(b) +ln(a)) = \frac 1 2 (ln (\frac b a)ln(ab))∫abxln(x)dx=2ln2(x)∣ab=2ln2(b)−2ln2(a)=21(ln2(b)−ln2(a))=21(ln(b)−ln(a))(ln(b)+ln(a))=21(ln(ab)ln(ab))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments