First we prove statement for one-dimensional case, that is "(x^a)^{(b)}=\\binom{a}bb!x^{a-b}", where "b\\le a".
We apply mathematical induction on "b\\le a".
Indeed, "(x^a)^{(0)}=\\binom{a}00!x^{a-0}=x^a". Suppose that "(x^a)^{(b)}=\\binom{a}bb!x^{a-b}" for all "b\\le k" , where "0\\le k\\le a".
If "k=a" , then our statement is proved. If "k<a" , then "(x^a)^{(k+1)}=\\bigl((x^a)^{(k)}\\bigr)'" .
By the induction hypothesis we have "(x^a)^{(k)}=\\binom{a}kk!x^{a-k}" , so "(x^a)^{(k+1)}=\\bigl((x^a)^{(k)}\\bigr)'=\\bigl(\\binom{a}kk!x^{a-k}\\bigr)'="
"=\\binom{a}kk!\\cdot(a-k)x^{a-k-1}"
Consider "\\binom{a}kk!\\cdot(a-k)" .
"\\binom{a}kk!\\cdot(a-k)=\\frac{a!}{k!(a-k)!}k!(a-k)=\\frac{a!}{(a-k-1)!}="
"=\\frac{a!}{(a-k-1)!(k+1)!}(k+1)!=\\binom{a}{k+1}(k+1)!"
So "(x^a)^{(k+1)}=\\binom{a}kk!\\cdot(a-k)x^{a-k-1}=\\binom{a}{k+1}(k+1)!x^{a-k-1}" .
By the mathematical induction we obtain "(x^a)^{(b)}=\\binom{a}bb!x^{a-b}" for all "b\\le a" .
Consider multi-indices. We prove by induction on "n" that "\\frac{\\partial^{|\\beta|} x^\\alpha}{\\partial x^\\beta}=\\binom{\\alpha}{\\beta}\\beta!x^{\\alpha-\\beta}" , where "x=(x_1,\\ldots,x_n)", "\\alpha=(\\alpha_1,\\ldots,\\alpha_n)", "\\beta=(\\beta_1,\\ldots,\\beta_n)" and "\\beta\\le\\alpha".
We proved above this statement for "n=1". Suppose that the statement is true for "n=k", where "k\\ge 1" .
Let "x=(x_1,\\ldots,x_k,x_{k+1})", "\\alpha=(\\alpha_1,\\ldots,\\alpha_k,\\alpha_{k+1})", "\\beta=(\\beta_1,\\ldots,\\beta_k,\\beta_{k+1})" and "\\beta\\le\\alpha".
Introduce new denotations: "x_0=(x_1,\\ldots,x_k)", "\\alpha_0=(\\alpha_1,\\ldots,\\alpha_k)", "\\beta_0=(\\beta_1,\\ldots,\\beta_k)".
Comments
Leave a comment