Question #95780
Let a and β be multi-indices such that β ≤ a. Prove that ∂^(β) x^(a) = (a,β) β!x^(a - β) if β≤a
1
Expert's answer
2019-10-04T10:05:38-0400

First we prove statement for one-dimensional case, that is (xa)(b)=(ab)b!xab(x^a)^{(b)}=\binom{a}bb!x^{a-b}, where bab\le a.

We apply mathematical induction on bab\le a.

Indeed, (xa)(0)=(a0)0!xa0=xa(x^a)^{(0)}=\binom{a}00!x^{a-0}=x^a. Suppose that (xa)(b)=(ab)b!xab(x^a)^{(b)}=\binom{a}bb!x^{a-b} for all bkb\le k , where 0ka0\le k\le a.

If k=ak=a , then our statement is proved. If k<ak<a , then (xa)(k+1)=((xa)(k))(x^a)^{(k+1)}=\bigl((x^a)^{(k)}\bigr)' .

By the induction hypothesis we have (xa)(k)=(ak)k!xak(x^a)^{(k)}=\binom{a}kk!x^{a-k} , so (xa)(k+1)=((xa)(k))=((ak)k!xak)=(x^a)^{(k+1)}=\bigl((x^a)^{(k)}\bigr)'=\bigl(\binom{a}kk!x^{a-k}\bigr)'=

=(ak)k!(ak)xak1=\binom{a}kk!\cdot(a-k)x^{a-k-1}

Consider (ak)k!(ak)\binom{a}kk!\cdot(a-k) .

(ak)k!(ak)=a!k!(ak)!k!(ak)=a!(ak1)!=\binom{a}kk!\cdot(a-k)=\frac{a!}{k!(a-k)!}k!(a-k)=\frac{a!}{(a-k-1)!}=

=a!(ak1)!(k+1)!(k+1)!=(ak+1)(k+1)!=\frac{a!}{(a-k-1)!(k+1)!}(k+1)!=\binom{a}{k+1}(k+1)!

So (xa)(k+1)=(ak)k!(ak)xak1=(ak+1)(k+1)!xak1(x^a)^{(k+1)}=\binom{a}kk!\cdot(a-k)x^{a-k-1}=\binom{a}{k+1}(k+1)!x^{a-k-1} .

By the mathematical induction we obtain (xa)(b)=(ab)b!xab(x^a)^{(b)}=\binom{a}bb!x^{a-b} for all bab\le a .

Consider multi-indices. We prove by induction on nn that βxαxβ=(αβ)β!xαβ\frac{\partial^{|\beta|} x^\alpha}{\partial x^\beta}=\binom{\alpha}{\beta}\beta!x^{\alpha-\beta} , where x=(x1,,xn)x=(x_1,\ldots,x_n), α=(α1,,αn)\alpha=(\alpha_1,\ldots,\alpha_n), β=(β1,,βn)\beta=(\beta_1,\ldots,\beta_n) and βα\beta\le\alpha.

We proved above this statement for n=1n=1. Suppose that the statement is true for n=kn=k, where k1k\ge 1 .

Let x=(x1,,xk,xk+1)x=(x_1,\ldots,x_k,x_{k+1}), α=(α1,,αk,αk+1)\alpha=(\alpha_1,\ldots,\alpha_k,\alpha_{k+1}), β=(β1,,βk,βk+1)\beta=(\beta_1,\ldots,\beta_k,\beta_{k+1}) and βα\beta\le\alpha.

Introduce new denotations: x0=(x1,,xk)x_0=(x_1,\ldots,x_k), α0=(α1,,αk)\alpha_0=(\alpha_1,\ldots,\alpha_k), β0=(β1,,βk)\beta_0=(\beta_1,\ldots,\beta_k).

We have βxαxβ=β0+βk+1x0α0xk+1αk+1x0β0xk+1βk+1=βk+1xk+1βk+1(β0x0α0xk+1αk+1x0β0)=\frac{\partial^{|\beta|} x^\alpha}{\partial x^\beta}=\frac{\partial^{|\beta_0|+\beta_{k+1}} x_0^{\alpha_0}x_{k+1}^{\alpha_{k+1}}}{\partial x_0^{\beta_0}\partial x_{k+1}^{\beta_{k+1}}}=\frac{\partial^{\beta_{k+1}}}{\partial x_{k+1}^{\beta_{k+1}}}\bigl(\frac{\partial^{|\beta_0|} x_0^{\alpha_0}x_{k+1}^{\alpha_{k+1}}}{\partial x_0^{\beta_0}}\bigr)= =βk+1xk+1βk+1(xk+1αk+1β0x0α0x0β0)=β0x0α0x0β0βk+1xk+1αk+1xk+1βk+1=\frac{\partial^{\beta_{k+1}}}{\partial x_{k+1}^{\beta_{k+1}}}\bigl(x_{k+1}^{\alpha_{k+1}}\frac{\partial^{|\beta_0|} x_0^{\alpha_0}}{\partial x_0^{\beta_0}}\bigr)=\frac{\partial^{|\beta_0|} x_0^{\alpha_0}}{\partial x_0^{\beta_0}}\frac{\partial^{\beta_{k+1}} x_{k+1}^{\alpha_{k+1}}}{\partial x_{k+1}^{\beta_{k+1}}}Since βα\beta\le\alpha, we obtain β0α0\beta_0\le\alpha_0 and βk+1αk+1\beta_{k+1}\le\alpha_{k+1}, so βk+1xk+1αk+1xk+1βk+1=(αk+1βk+1)βk+1!xk+1αk+1βk+1\frac{\partial^{\beta_{k+1}} x_{k+1}^{\alpha_{k+1}}}{\partial x_{k+1}^{\beta_{k+1}}}=\binom{\alpha_{k+1}}{\beta_{k+1}}\beta_{k+1}!x_{k+1}^{\alpha_{k+1}-\beta_{k+1}} and by induction hypothesis we have β0x0α0x0β0=(α0β0)β0!x0α0β0\frac{\partial^{|\beta_0|} x_0^{\alpha_0}}{\partial x_0^{\beta_0}}=\binom{\alpha_0}{\beta_0}\beta_0!x_0^{\alpha_0-\beta_0} . We obtain βxαxβ=β0x0α0x0β0βk+1xk+1αk+1xk+1βk+1=\frac{\partial^{|\beta|} x^\alpha}{\partial x^\beta}=\frac{\partial^{|\beta_0|} x_0^{\alpha_0}}{\partial x_0^{\beta_0}}\frac{\partial^{\beta_{k+1}} x_{k+1}^{\alpha_{k+1}}}{\partial x_{k+1}^{\beta_{k+1}}}= =(α0β0)β0!x0α0β0(αk+1βk+1)βk+1!xk+1αk+1βk+1==\binom{\alpha_0}{\beta_0}\beta_0!x_0^{\alpha_0-\beta_0}\cdot\binom{\alpha_{k+1}}{\beta_{k+1}}\beta_{k+1}!x_{k+1}^{\alpha_{k+1}-\beta_{k+1}}= =(α0β0)(αk+1βk+1)β0!βk+1!x0α0β0xk+1αk+1βk+1=(αβ)β!xαβ=\binom{\alpha_0}{\beta_0}\binom{\alpha_{k+1}}{\beta_{k+1}}\beta_0!\beta_{k+1}!x_0^{\alpha_0-\beta_0}x_{k+1}^{\alpha_{k+1}-\beta_{k+1}}=\binom{\alpha}{\beta}\beta!x^{\alpha-\beta} By the mathematical induction we obtain β0x0α0x0β0=(αβ)β!xαβ\frac{\partial^{|\beta_0|} x_0^{\alpha_0}}{\partial x_0^{\beta_0}}=\binom{\alpha}{\beta}\beta!x^{\alpha-\beta} for all nn, x=(x1,,xn)x=(x_1,\ldots,x_n), α=(α1,,αn)\alpha=(\alpha_1,\ldots,\alpha_n), β=(β1,,βn)\beta=(\beta_1,\ldots,\beta_n), where βα\beta\le\alpha .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS