First we prove statement for one-dimensional case, that is (xa)(b)=(ba)b!xa−b, where b≤a.
We apply mathematical induction on b≤a.
Indeed, (xa)(0)=(0a)0!xa−0=xa. Suppose that (xa)(b)=(ba)b!xa−b for all b≤k , where 0≤k≤a.
If k=a , then our statement is proved. If k<a , then (xa)(k+1)=((xa)(k))′ .
By the induction hypothesis we have (xa)(k)=(ka)k!xa−k , so (xa)(k+1)=((xa)(k))′=((ka)k!xa−k)′=
=(ka)k!⋅(a−k)xa−k−1
Consider (ka)k!⋅(a−k) .
(ka)k!⋅(a−k)=k!(a−k)!a!k!(a−k)=(a−k−1)!a!=
=(a−k−1)!(k+1)!a!(k+1)!=(k+1a)(k+1)!
So (xa)(k+1)=(ka)k!⋅(a−k)xa−k−1=(k+1a)(k+1)!xa−k−1 .
By the mathematical induction we obtain (xa)(b)=(ba)b!xa−b for all b≤a .
Consider multi-indices. We prove by induction on n that ∂xβ∂∣β∣xα=(βα)β!xα−β , where x=(x1,…,xn), α=(α1,…,αn), β=(β1,…,βn) and β≤α.
We proved above this statement for n=1. Suppose that the statement is true for n=k, where k≥1 .
Let x=(x1,…,xk,xk+1), α=(α1,…,αk,αk+1), β=(β1,…,βk,βk+1) and β≤α.
Introduce new denotations: x0=(x1,…,xk), α0=(α1,…,αk), β0=(β1,…,βk).
Comments