ANSWER¨ 8π
EXPLANATION.Let D={(x,y):x2+y2≤4}D=\left\{ \left( x,y \right) :\quad { x }^{ 2 }+{ y }^{ 2 }\le 4 \right\}D={(x,y):x2+y2≤4} . The area of the D is 4π=∬Ddxdy\iint_{D} dxdy∬Ddxdy By the Green's theorem ∮(x5+2y)dx+(4x−6y3)dy=\oint { \left( { x }^{ 5 }+2y \right) dx+\left( 4x-6{ y }^{ 3 } \right) dy\quad } =∮(x5+2y)dx+(4x−6y3)dy= ∬D[∂(4x−6y3)∂x−∂(x5+2y)∂y]dxdy\iint_{D} \left [ \frac{\partial (4x-6y^{3})}{\partial x } -\frac{\partial(x^{5}+2y) }{\partial y}\right ]dxdy∬D[∂x∂(4x−6y3)−∂y∂(x5+2y)]dxdy =∬D[4−2]dxdy\iint_{D} \left [ 4-2\right ]dxdy∬D[4−2]dxdy =8π.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments