Trace the curve y2=(x+1)(x−1)2 by showing all the properties you use to trace it.
Solution:
Step 1: Domain
D(y):(x+1)(x−1)2⩾0
(x+1)⩾0
x⩾−1
D(y)=[−1;+∞)
Step 2: Range
E(y)=R
Step 3: Symmetry
(−y)2=(x+1)(x−1)2=y2
The curve is symmetric about x-axis
Step 4: Asymptotes
It has no asymptotes
Step 5: Intersection points with axes:
x-axis: y=0,x=±1
y-axis: x=0,y=±1
Step 6: Monotonicity
y=±(x−1)x+1
y′=±(x+1+2x+1x−1)
y′=±2x+12x+2+x−1
y′=±2x+13x+1
Let y′=0
±2x+13x+1=0
If x=−1 then y′=∞ or y′ does not exists
±(3x+1)=0
x=−31
y2(−31)=32⋅916=2732
y=±2732≈±1.09
Let y<0
So that(−31;−2732) is minimum
Let y>0
So that (−31;2732) is maximum
Step 7: Curve
Comments