Trace the curve y 2 = ( x + 1 ) ( x − 1 ) 2 y^{2}=(x+1)(x-1)^{2} y 2 = ( x + 1 ) ( x − 1 ) 2 by showing all the properties you use to trace it.
Solution:
Step 1 : Domain
D ( y ) : ( x + 1 ) ( x − 1 ) 2 ⩾ 0 D(y): (x+1)(x-1)^2\geqslant0 D ( y ) : ( x + 1 ) ( x − 1 ) 2 ⩾ 0
( x + 1 ) ⩾ 0 (x+1)\geqslant0 ( x + 1 ) ⩾ 0
x ⩾ − 1 x\geqslant-1 x ⩾ − 1
D ( y ) = [ − 1 ; + ∞ ) D(y)=[-1;+\infin) D ( y ) = [ − 1 ; + ∞ )
Step 2 : Range
E ( y ) = R E(y)=\R E ( y ) = R
Step 3 : Symmetry
( − y ) 2 = ( x + 1 ) ( x − 1 ) 2 = y 2 (-y)^{2}=(x+1)(x-1)^{2}=y^{2} ( − y ) 2 = ( x + 1 ) ( x − 1 ) 2 = y 2
The curve is symmetric about x-axis
Step 4 : Asymptotes
It has no asymptotes
Step 5 : Intersection points with axes:
x-axis: y = 0 , x = ± 1 y=0, x=\pm1 y = 0 , x = ± 1
y-axis: x = 0 , y = ± 1 x=0, y=\pm1 x = 0 , y = ± 1
Step 6 : Monotonicity
y = ± ( x − 1 ) x + 1 y=\pm(x-1)\sqrt{x+1} y = ± ( x − 1 ) x + 1
y ′ = ± ( x + 1 + x − 1 2 x + 1 ) y'=\pm(\sqrt{x+1}+\frac{x-1}{2\sqrt{x+1}}) y ′ = ± ( x + 1 + 2 x + 1 x − 1 )
y ′ = ± 2 x + 2 + x − 1 2 x + 1 y'=\pm\frac{2x+2+x-1}{2\sqrt{x+1}} y ′ = ± 2 x + 1 2 x + 2 + x − 1
y ′ = ± 3 x + 1 2 x + 1 y'=\pm\frac{3x+1}{2\sqrt{x+1}} y ′ = ± 2 x + 1 3 x + 1
Let y ′ = 0 y'=0 y ′ = 0
± 3 x + 1 2 x + 1 = 0 \pm\frac{3x+1}{2\sqrt{x+1}}=0 ± 2 x + 1 3 x + 1 = 0
If x = − 1 x=-1 x = − 1 then y ′ = ∞ y'=\infin y ′ = ∞ or y ′ y' y ′ does not exists
± ( 3 x + 1 ) = 0 \pm(3x+1)=0 ± ( 3 x + 1 ) = 0
x = − 1 3 x=-\frac{1}{3} x = − 3 1
y 2 ( − 1 3 ) = 2 3 ⋅ 16 9 = 32 27 y^{2}(-\frac{1}{3})=\frac{2}{3}\cdot\frac{16}{9}=\frac{32}{27} y 2 ( − 3 1 ) = 3 2 ⋅ 9 16 = 27 32
y = ± 32 27 ≈ ± 1.09 y=\pm\frac{\sqrt{32}}{\sqrt{27}}\approx\pm1.09 y = ± 27 32 ≈ ± 1.09
Let y < 0 y<0 y < 0
So that( − 1 3 ; − 32 27 ) (-\frac{1}{3};-\frac{\sqrt{32}}{\sqrt{27}}) ( − 3 1 ; − 27 32 ) is minimum
Let y > 0 y>0 y > 0
So that ( − 1 3 ; 32 27 ) (-\frac{1}{3};\frac{\sqrt{32}}{\sqrt{27}}) ( − 3 1 ; 27 32 ) is maximum
Step 7 : Curve
Comments