Question #92776
Trace the curve y^2 = (x +1) (x −1)^2 by showing all the properties you use to trace it.
1
Expert's answer
2019-08-18T12:57:24-0400

Trace the curve y2=(x+1)(x1)2y^{2}=(x+1)(x-1)^{2} by showing all the properties you use to trace it.

Solution:

Step 1: Domain

D(y):(x+1)(x1)20D(y): (x+1)(x-1)^2\geqslant0

(x+1)0(x+1)\geqslant0

x1x\geqslant-1

D(y)=[1;+)D(y)=[-1;+\infin)

Step 2: Range

E(y)=RE(y)=\R

Step 3: Symmetry

(y)2=(x+1)(x1)2=y2(-y)^{2}=(x+1)(x-1)^{2}=y^{2}

The curve is symmetric about x-axis

Step 4: Asymptotes

It has no asymptotes

Step 5: Intersection points with axes:

x-axis: y=0,x=±1y=0, x=\pm1

y-axis: x=0,y=±1x=0, y=\pm1

Step 6: Monotonicity

y=±(x1)x+1y=\pm(x-1)\sqrt{x+1}

y=±(x+1+x12x+1)y'=\pm(\sqrt{x+1}+\frac{x-1}{2\sqrt{x+1}})

y=±2x+2+x12x+1y'=\pm\frac{2x+2+x-1}{2\sqrt{x+1}}

y=±3x+12x+1y'=\pm\frac{3x+1}{2\sqrt{x+1}}

Let y=0y'=0

±3x+12x+1=0\pm\frac{3x+1}{2\sqrt{x+1}}=0

If x=1x=-1 then y=y'=\infin or yy' does not exists

±(3x+1)=0\pm(3x+1)=0

x=13x=-\frac{1}{3}

y2(13)=23169=3227y^{2}(-\frac{1}{3})=\frac{2}{3}\cdot\frac{16}{9}=\frac{32}{27}

y=±3227±1.09y=\pm\frac{\sqrt{32}}{\sqrt{27}}\approx\pm1.09

Let y<0y<0



So that(13;3227)(-\frac{1}{3};-\frac{\sqrt{32}}{\sqrt{27}}) is minimum

Let y>0y>0


So that (13;3227)(-\frac{1}{3};\frac{\sqrt{32}}{\sqrt{27}}) is maximum

Step 7: Curve





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS