1 ) ( c o s h ( s i n 2 ( 2 x ) ) ) ′ = s i n h ( s i n 2 ( 2 / x ) ) 2 s i n ( 2 x ) c o s ( 2 x ) ( − 2 x 2 ) 1) (cosh(sin^2(\cfrac{2}{x})))' = sinh(sin^2(2/x))2sin(\cfrac{2}{x})cos(\cfrac{2}{x})(\cfrac{-2}{x^2}) 1 ) ( cos h ( s i n 2 ( x 2 )) ) ′ = s inh ( s i n 2 ( 2/ x )) 2 s in ( x 2 ) cos ( x 2 ) ( x 2 − 2 )
2 ) ( 1 c o t h 3 ( s i n h ( 2 3 x ) ) ) ′ = − 3 c o t h 4 ( s i n h ( 2 3 x ) ) − 3 l n ( 2 ) 2 3 x c o s h ( 2 3 x ) s i n h 2 ( s i n h ( 2 3 x ) ) = 9 l n ( 2 ) 2 3 x c o s h ( 2 3 x ) c o t h 4 ( s i n h ( 2 3 x ) ) s i n h 2 ( s i n h ( 2 3 x ) ) 2)(\cfrac{1}{coth^3(sinh(2^{3x}))})'=\cfrac{-3}{coth^4(sinh(2^{3x}))}\cfrac{-3ln(2)2^{3x}cosh(2^{3x})}{sinh^2(sinh(2^{3x}))}=\cfrac{9ln(2)2^{3x}cosh(2^{3x})}{coth^4(sinh(2^{3x}))sinh^2(sinh(2^{3x}))} 2 ) ( co t h 3 ( s inh ( 2 3 x )) 1 ) ′ = co t h 4 ( s inh ( 2 3 x )) − 3 s in h 2 ( s inh ( 2 3 x )) − 3 l n ( 2 ) 2 3 x cos h ( 2 3 x ) = co t h 4 ( s inh ( 2 3 x )) s in h 2 ( s inh ( 2 3 x )) 9 l n ( 2 ) 2 3 x cos h ( 2 3 x ) 3 ) ( x l n ( x + 2 ) ) ′ = x l n ( x + 2 ) ( l n ( x l n ( x + 2 ) ) ′ = x l n ( x + 2 ) ( l n ( x + 2 ) l n ( x ) ) ′ = x l n ( x + 2 ) ( l n ( x + 2 ) x + l n x x + 2 ) 3)(x^{ln(x+2)})'=x^{ln(x+2)}(ln(x^{ln(x+2)})'=x^{ln(x+2)}(ln(x+2)ln(x))'=x^{ln(x+2)}(\cfrac{ln(x+2)}{x}+\cfrac{lnx}{x+2}) 3 ) ( x l n ( x + 2 ) ) ′ = x l n ( x + 2 ) ( l n ( x l n ( x + 2 ) ) ′ = x l n ( x + 2 ) ( l n ( x + 2 ) l n ( x ) ) ′ = x l n ( x + 2 ) ( x l n ( x + 2 ) + x + 2 l n x )
4 ) ( log 4 ( x 2 + 3 ) 2 x − 4 ( x − 4 ) 4 ) ′ = ( log 4 ( x 2 + 3 ) 2 x − 4 ) ′ 1 ( x − 4 ) 4 + ( log 4 ( x 2 + 3 ) 2 x − 4 ) ( 1 ( x − 4 ) 4 ) ′ = − 4 log 4 ( x 2 + 3 ) 2 x − 4 ( x − 4 ) 5 + ( log 4 ( x 2 + 3 ) 1 ( x − 4 ) 4 2 x − 4 ) + 2 x − 4 ( x − 4 ) 4 2 x ( x 2 + 3 ) l n 4 4)(\log_4(x^2+3)\cfrac{\sqrt{2x-4}}{(x-4)^4})'=(\log_4(x^2+3)\sqrt{2x-4})'\cfrac{1}{(x-4)^4}+
(\log_4(x^2+3)\sqrt{2x-4})(\cfrac{1}{(x-4)^4})'=-4\log_4(x^2+3)\cfrac{\sqrt{2x-4}}{(x-4)^5}+(\log_4(x^2+3)\cfrac{1}{(x-4)^4\sqrt{2x-4}})+\cfrac{\sqrt{2x-4}}{(x-4)^4}\cfrac{2x}{(x^2+3)ln4} 4 ) ( log 4 ( x 2 + 3 ) ( x − 4 ) 4 2 x − 4 ) ′ = ( log 4 ( x 2 + 3 ) 2 x − 4 ) ′ ( x − 4 ) 4 1 + ( log 4 ( x 2 + 3 ) 2 x − 4 ) ( ( x − 4 ) 4 1 ) ′ = − 4 log 4 ( x 2 + 3 ) ( x − 4 ) 5 2 x − 4 + ( log 4 ( x 2 + 3 ) ( x − 4 ) 4 2 x − 4 1 ) + ( x − 4 ) 4 2 x − 4 ( x 2 + 3 ) l n 4 2 x
Comments