Compute a derivative of y with respect to x using initial formulas.
1. y=(x+1)(x+2)(x+1)(x−2)
y=x+2x−2
y′=(x+2)2(x−2)′(x+2)−(x+2)′(x−2)
y′=(x+2)2x+2−x+2
y′=(x+2)24
Answer: (x+2)24
2. ln(xy)=2x+y
(ln(xy))′=(2x+y)′
xy1(xy)′=2x+yln2 (x+y)′
xyy+xy′=2x+yln2 (1+y′)
x1+yy′=2x+yln2+ 2x+yln2 y′
yy′−2x+yln2 y′=2x+yln2−x1
y′(y1−2x+yln2)=2x+yln2−x1
y′=y1−2x+yln22x+yln2−x1
y′=−2x+yln2−y12x+yln2−x1
y′=−x(2x+yyln2−1)y(2x+yxln2−1)
Answer:−x(2x+yyln2−1)y(2x+yxln2−1)
3. y=cosec2log2x2
y=cosecx2
y=sinx21
y′=−sin2x2(sinx2)′
y′=−sin2x22x⋅cosx2
Answer:−sin2x22x⋅cosx2
4. y=arctan(ex23x3)
y′=1+(ex23x3)2(ex23x3)′
y′=1+(ex23x3)2(ex2)′3x3+(3x3)′ex2
y′=1+(ex23x3)22x⋅ex23x3+3x2⋅3x3(ln3)⋅ex2
y′=e2x232x3+1x⋅ex23x3(3xln3+2)
Answer:e2x232x3+1x⋅ex23x3(3xln3+2)
Comments