Question #92551
1. y = (x+1) (×-2) / (x+1) (x+2)
2. ln xy = 2 raised to x+y
3. y= csc( 2 raised to log with base of 2 x squared)
4. y= arctan ( e raised to x squared 3 raised to x cube)
1
Expert's answer
2019-08-16T03:41:47-0400

Compute a derivative of y with respect to x using initial formulas.

1. y=(x+1)(x2)(x+1)(x+2)y=\frac{(x+1)(x-2)}{(x+1)(x+2)}

y=x2x+2y=\frac{x-2}{x+2}

y=(x2)(x+2)(x+2)(x2)(x+2)2y'=\frac{(x-2)'(x+2)-(x+2)'(x-2)}{(x+2)^2}

y=x+2x+2(x+2)2y'=\frac{x+2-x+2}{(x+2)^2}

y=4(x+2)2y'=\frac{4}{(x+2)^2}

Answer: 4(x+2)2\frac{4}{(x+2)^2}


2. ln(xy)=2x+y\ln{(xy)}=2^{x+y}

(ln(xy))=(2x+y)(\ln{(xy)})'=(2^{x+y})'

1xy(xy)=2x+yln2 (x+y)\frac{1}{xy}(xy)'=2^{x+y}\ln{2}\ (x+y)'

y+xyxy=2x+yln2 (1+y)\frac{y+xy'}{xy}=2^{x+y}\ln{2}\ (1+y')

1x+yy=2x+yln2+ 2x+yln2 y\frac{1}{x}+\frac{y'}{y}=2^{x+y}\ln{2}+\ 2^{x+y}\ln{2}\ y'

yy2x+yln2 y=2x+yln21x\frac{y'}{y}-2^{x+y}\ln{2}\ y'=2^{x+y}\ln{2}-\frac{1}{x}

y(1y2x+yln2)=2x+yln21xy'(\frac{1}{y}-2^{x+y}\ln{2})=2^{x+y}\ln{2}-\frac{1}{x}

y=2x+yln21x1y2x+yln2y'=\frac{2^{x+y}\ln{2}-\frac{1}{x}}{\frac{1}{y}-2^{x+y}\ln{2}}

y=2x+yln21x2x+yln21yy'=-\frac{2^{x+y}\ln{2}-\frac{1}{x}}{2^{x+y}\ln{2}-\frac{1}{y}}

y=y(2x+yxln21)x(2x+yyln21)y'=-\frac{y(2^{x+y}x\ln{2}-1)}{x(2^{x+y}y\ln{2}-1)}

Answer:y(2x+yxln21)x(2x+yyln21)-\frac{y(2^{x+y}x\ln{2}-1)}{x(2^{x+y}y\ln{2}-1)}


3. y=cosec2log2x2y=\cosec{2^{log_2{x^2}}}

y=cosecx2y=\cosec{x^2}

y=1sinx2y=\frac{1}{\sin{x^2}}

y=(sinx2)sin2x2y'=-\frac{(\sin{x^2})'}{\sin^2{x^2}}

y=2xcosx2sin2x2y'=-\frac{2x\cdot \cos{x^2}}{\sin^2{x^2}}

Answer:2xcosx2sin2x2-\frac{2x\cdot \cos{x^2}}{\sin^2{x^2}}


4. y=arctan(ex23x3)y=\arctan{(e^{x^2}3^{x^3})}

y=(ex23x3)1+(ex23x3)2y'=\frac{(e^{x^2}3^{x^3})'}{1+(e^{x^2}3^{x^3})^{2}}

y=(ex2)3x3+(3x3)ex21+(ex23x3)2y'=\frac{(e^{x^2})'3^{x^3}+(3^{x^3})'e^{x^2}}{1+(e^{x^2}3^{x^3})^{2}}

y=2xex23x3+3x23x3(ln3)ex21+(ex23x3)2y'=\frac{2x\cdot e^{x^2}3^{x^3}+3x^2\cdot3^{x^3}(\ln{3})\cdot e^{x^2}}{1+(e^{x^2}3^{x^3})^{2}}

y=xex23x3(3xln3+2)e2x232x3+1y'=\frac{x\cdot e^{x^2}3^{x^3}(3x\ln{3}+2)}{e^{2x^2}3^{2x^3}+1}

Answer:xex23x3(3xln3+2)e2x232x3+1\frac{x\cdot e^{x^2}3^{x^3}(3x\ln{3}+2)}{e^{2x^2}3^{2x^3}+1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS