Question #92549
1. Evaluate lim 1+ e raised to 2x / xcosx
c approaching 0

2. Apply L Hopital's rule to show that lim ( 1+x ) raised to 1/x = e

3. Find dy/ dx and d squared y / d x raised to 2 given x= sinht, y= casht.

4. Approximate the value of arcsin ( 0.48) by differential.

5. The measured radius of the ballbearing is 0.7 inch. If the measurement is correct to within 0.01 inch, estimate the relative error in the volume of the ball bearing.
1
Expert's answer
2019-08-16T09:39:21-0400

1

limx0(1+e)2xxcosx=[(1+e)00]=limx0(1+e)2cosx=[(1+e)21]=(1+e)2\lim_{x\to 0} (1+e)^{\frac{2x}{xcosx}}=[(1+e)^\frac{0}{0}] =\lim_{x\to 0} (1+e)^{\frac{2}{cosx}}=[(1+e)^\frac{2}{1}]=(1+e)^2


2


L=limx0(1+x)1xL=\lim_{x\to 0} (1+x)^{\frac{1}{x}}

logL=log(limx0(1+x)1x)=limx0log(1+x)1x=limx0log(1+x)x=\log L=\log\left(\lim_{x\to 0} (1+x)^{\frac{1}{x}}\right)= \lim_{x\to 0} \log(1+x)^{\frac{1}{x}}=\lim_{x\to 0}\frac{\log(1+x)}{x}=

=[00]=limx0ddxlog(1+x)ddxx=limx011+x1=1=[\frac{0}{0}]=\lim_{x\to 0} \frac{\frac{d}{dx}\log(1+x)}{\frac{d}{dx}x}=\lim_{x\to 0} \frac{\frac{1}{1+x}}{1}=1L=eL=e

3


x=sinh(t);y=cosh(t)x=sinh(t);\quad y=cosh(t)dydx=y=dydtdxdt=sinh(t)cosh(t)=tanh(t)\frac{dy}{dx}=y'=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{sinh(t)}{cosh(t)}=tanh(t)d2ydx2=dydtdxdt=ddttanh(t)ddtsinh(t)=1tanh2(t)cosh(t)\frac{d^2y}{dx^2}=\frac{\frac{dy'}{dt}}{\frac{dx}{dt}}= \frac{\frac{d}{dt}tanh(t)}{\frac{d}{dt}sinh(t)}=\frac{1-tanh^2(t)}{cosh(t)}


4.



dy=f(x)(xx0)dy=f'(x)(x-x_0)f(x)f(x0)=df=f(x)(xx0)f(x)-f(x_0)=df=f'(x)(x-x_0)

Let x=0.5 and x0=0.48x_0=0.48


f(0.5)=arcsin0.5=π6f(0.5)=\arcsin0.5=\frac{\pi}{6}

f(x)=11x2f'(x)=\frac{1}{\sqrt{1-x^2}}f(0.5)=110.25=23f'(0.5)=\frac{1}{\sqrt{1-0.25}}=\frac{2}{\sqrt{3}}

Hence


f(x0)=f(0.48)=f(0.5)f(0.5)0.02=π60.043f(x_0)=f(0.48)=f(0.5)-f'(0.5)*0.02=\frac{\pi}{6}-\frac{0.04}{\sqrt{3}}

5.


V=43πr3V=\frac{4}{3}\pi r^3


dV(r)=V(r)drdV(r)=V'(r)dr

r=0.7

dr=0.01


V=4πr2V'=4\pi r^2ΔVdV=4π(0.7)2(±0.01)=4π0.49(±0.01)\Delta V\approx dV=4\pi (0.7)^2*(\pm0.01)=4\pi*0.49*(\pm0.01)

Relative error=dVV=4π0.49(±0.01)43π(0.7)3=3±0.010.7=±0.04\frac{dV}{V}=\frac{4\pi*0.49*(\pm0.01)}{\frac{4}{3}\pi (0.7)^3}=3*\frac{\pm0.01}{0.7}=\pm0.04

Or


±4%\pm4\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS