1
lim x → 0 ( 1 + e ) 2 x x c o s x = [ ( 1 + e ) 0 0 ] = lim x → 0 ( 1 + e ) 2 c o s x = [ ( 1 + e ) 2 1 ] = ( 1 + e ) 2 \lim_{x\to 0} (1+e)^{\frac{2x}{xcosx}}=[(1+e)^\frac{0}{0}]
=\lim_{x\to 0} (1+e)^{\frac{2}{cosx}}=[(1+e)^\frac{2}{1}]=(1+e)^2 x → 0 lim ( 1 + e ) x cos x 2 x = [( 1 + e ) 0 0 ] = x → 0 lim ( 1 + e ) cos x 2 = [( 1 + e ) 1 2 ] = ( 1 + e ) 2
2
L = lim x → 0 ( 1 + x ) 1 x L=\lim_{x\to 0} (1+x)^{\frac{1}{x}} L = x → 0 lim ( 1 + x ) x 1
log L = log ( lim x → 0 ( 1 + x ) 1 x ) = lim x → 0 log ( 1 + x ) 1 x = lim x → 0 log ( 1 + x ) x = \log L=\log\left(\lim_{x\to 0} (1+x)^{\frac{1}{x}}\right)=
\lim_{x\to 0} \log(1+x)^{\frac{1}{x}}=\lim_{x\to 0}\frac{\log(1+x)}{x}= log L = log ( x → 0 lim ( 1 + x ) x 1 ) = x → 0 lim log ( 1 + x ) x 1 = x → 0 lim x log ( 1 + x ) =
= [ 0 0 ] = lim x → 0 d d x log ( 1 + x ) d d x x = lim x → 0 1 1 + x 1 = 1 =[\frac{0}{0}]=\lim_{x\to 0} \frac{\frac{d}{dx}\log(1+x)}{\frac{d}{dx}x}=\lim_{x\to 0} \frac{\frac{1}{1+x}}{1}=1 = [ 0 0 ] = x → 0 lim d x d x d x d log ( 1 + x ) = x → 0 lim 1 1 + x 1 = 1 L = e L=e L = e 3
x = s i n h ( t ) ; y = c o s h ( t ) x=sinh(t);\quad
y=cosh(t) x = s inh ( t ) ; y = cos h ( t ) d y d x = y ′ = d y d t d x d t = s i n h ( t ) c o s h ( t ) = t a n h ( t ) \frac{dy}{dx}=y'=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{sinh(t)}{cosh(t)}=tanh(t) d x d y = y ′ = d t d x d t d y = cos h ( t ) s inh ( t ) = t anh ( t ) d 2 y d x 2 = d y ′ d t d x d t = d d t t a n h ( t ) d d t s i n h ( t ) = 1 − t a n h 2 ( t ) c o s h ( t ) \frac{d^2y}{dx^2}=\frac{\frac{dy'}{dt}}{\frac{dx}{dt}}=
\frac{\frac{d}{dt}tanh(t)}{\frac{d}{dt}sinh(t)}=\frac{1-tanh^2(t)}{cosh(t)} d x 2 d 2 y = d t d x d t d y ′ = d t d s inh ( t ) d t d t anh ( t ) = cos h ( t ) 1 − t an h 2 ( t )
4.
d y = f ′ ( x ) ( x − x 0 ) dy=f'(x)(x-x_0) d y = f ′ ( x ) ( x − x 0 ) f ( x ) − f ( x 0 ) = d f = f ′ ( x ) ( x − x 0 ) f(x)-f(x_0)=df=f'(x)(x-x_0) f ( x ) − f ( x 0 ) = df = f ′ ( x ) ( x − x 0 )
Let x=0.5 and x 0 = 0.48 x_0=0.48 x 0 = 0.48
f ( 0.5 ) = arcsin 0.5 = π 6 f(0.5)=\arcsin0.5=\frac{\pi}{6} f ( 0.5 ) = arcsin 0.5 = 6 π
f ′ ( x ) = 1 1 − x 2 f'(x)=\frac{1}{\sqrt{1-x^2}} f ′ ( x ) = 1 − x 2 1 f ′ ( 0.5 ) = 1 1 − 0.25 = 2 3 f'(0.5)=\frac{1}{\sqrt{1-0.25}}=\frac{2}{\sqrt{3}} f ′ ( 0.5 ) = 1 − 0.25 1 = 3 2 Hence
f ( x 0 ) = f ( 0.48 ) = f ( 0.5 ) − f ′ ( 0.5 ) ∗ 0.02 = π 6 − 0.04 3 f(x_0)=f(0.48)=f(0.5)-f'(0.5)*0.02=\frac{\pi}{6}-\frac{0.04}{\sqrt{3}} f ( x 0 ) = f ( 0.48 ) = f ( 0.5 ) − f ′ ( 0.5 ) ∗ 0.02 = 6 π − 3 0.04 5.
V = 4 3 π r 3 V=\frac{4}{3}\pi r^3 V = 3 4 π r 3
d V ( r ) = V ′ ( r ) d r dV(r)=V'(r)dr d V ( r ) = V ′ ( r ) d r r=0.7
dr=0.01
V ′ = 4 π r 2 V'=4\pi r^2 V ′ = 4 π r 2 Δ V ≈ d V = 4 π ( 0.7 ) 2 ∗ ( ± 0.01 ) = 4 π ∗ 0.49 ∗ ( ± 0.01 ) \Delta V\approx dV=4\pi (0.7)^2*(\pm0.01)=4\pi*0.49*(\pm0.01) Δ V ≈ d V = 4 π ( 0.7 ) 2 ∗ ( ± 0.01 ) = 4 π ∗ 0.49 ∗ ( ± 0.01 ) Relative error=d V V = 4 π ∗ 0.49 ∗ ( ± 0.01 ) 4 3 π ( 0.7 ) 3 = 3 ∗ ± 0.01 0.7 = ± 0.04 \frac{dV}{V}=\frac{4\pi*0.49*(\pm0.01)}{\frac{4}{3}\pi (0.7)^3}=3*\frac{\pm0.01}{0.7}=\pm0.04 V d V = 3 4 π ( 0.7 ) 3 4 π ∗ 0.49 ∗ ( ± 0.01 ) = 3 ∗ 0.7 ± 0.01 = ± 0.04
Or
± 4 % \pm4\% ± 4%
Comments