Differentiate tan^-1((sins-Cosx)/(Sini Cox’s))
1
2019-07-29T13:12:29-0400
(tan−1(sin(x)cos(x)sin(x)−cos(x)))′=
(tan−1(cos(x)1−sin(x)1))′= (using chain rule)
1+(cos(x)1−sin(x)1)21(cos(x)1−sin(x)1)′=
1+sin2(x)cos2(x)sin2(x)−2sin(x)cos(x)+cos2(x)1(cos(x)1−sin(x)1)′=
1+sin2(x)cos2(x)1−2sin(x)cos(x)1(cos(x)1−sin(x)1)′=
sin2(x)cos2(x)+1−2sin(x)cos(x)sin2(x)cos2(x)(cos(x)1−sin(x)1)′=
sin2(x)cos2(x)+1−2sin(x)cos(x)sin2(x)cos2(x)((cos(x)1)′−(sin(x)1)′)=
sin2(x)cos2(x)+1−2sin(x)cos(x)sin2(x)cos2(x)(cos2(x)−(cos(x))′−sin2(x)−(sin(x))′)=
sin2(x)cos2(x)+1−2sin(x)cos(x)sin2(x)cos2(x)(cos2(x)sin(x)+sin2(x)cos(x))=
(1−sin(x)cos(x))2sin2(x)cos2(x)sin2(x)cos2(x)sin3(x)+cos3(x)=
(1−sin(x)cos(x))2(sin(x)+cos(x))(sin2(x)+cos2(x)−sin(x)cos(x))=
(1−sin(x)cos(x))2(sin(x)+cos(x))(1−sin(x)cos(x))=
1−sin(x)cos(x)sin(x)+cos(x) Answer:
1−sin(x)cos(x)sin(x)+cos(x)
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments