2019-07-29T10:38:40-04:00
Differentiate tan^-1((sins-Cosx)/(Sini Cox’s))
1
2019-07-29T13:12:29-0400
( t a n − 1 ( s i n ( x ) − c o s ( x ) s i n ( x ) c o s ( x ) ) ) ′ = (tan^{-1}(\frac{sin(x)-cos(x)}{sin(x)cos(x)}))'= ( t a n − 1 ( s in ( x ) cos ( x ) s in ( x ) − cos ( x ) ) ) ′ =
( t a n − 1 ( 1 c o s ( x ) − 1 s i n ( x ) ) ) ′ = (tan^{-1}(\frac{1}{cos(x)}-\frac{1}{sin(x)}))'= ( t a n − 1 ( cos ( x ) 1 − s in ( x ) 1 ) ) ′ = (using chain rule)
1 1 + ( 1 c o s ( x ) − 1 s i n ( x ) ) 2 ( 1 c o s ( x ) − 1 s i n ( x ) ) ′ = \frac{1}{1+(\frac{1}{cos(x)}-\frac{1}{sin(x)})^2}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'= 1 + ( cos ( x ) 1 − s in ( x ) 1 ) 2 1 ( cos ( x ) 1 − s in ( x ) 1 ) ′ =
1 1 + s i n 2 ( x ) − 2 s i n ( x ) c o s ( x ) + c o s 2 ( x ) s i n 2 ( x ) c o s 2 ( x ) ( 1 c o s ( x ) − 1 s i n ( x ) ) ′ = \frac{1}{1+\frac{sin^2(x)-2sin(x)cos(x)+cos^2(x)}{sin^2(x)cos^2(x)}}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'= 1 + s i n 2 ( x ) co s 2 ( x ) s i n 2 ( x ) − 2 s in ( x ) cos ( x ) + co s 2 ( x ) 1 ( cos ( x ) 1 − s in ( x ) 1 ) ′ =
1 1 + 1 − 2 s i n ( x ) c o s ( x ) s i n 2 ( x ) c o s 2 ( x ) ( 1 c o s ( x ) − 1 s i n ( x ) ) ′ = \frac{1}{1+\frac{1-2sin(x)cos(x)}{sin^2(x)cos^2(x)}}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'= 1 + s i n 2 ( x ) co s 2 ( x ) 1 − 2 s in ( x ) cos ( x ) 1 ( cos ( x ) 1 − s in ( x ) 1 ) ′ =
s i n 2 ( x ) c o s 2 ( x ) s i n 2 ( x ) c o s 2 ( x ) + 1 − 2 s i n ( x ) c o s ( x ) ( 1 c o s ( x ) − 1 s i n ( x ) ) ′ = \frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'= s i n 2 ( x ) co s 2 ( x ) + 1 − 2 s in ( x ) cos ( x ) s i n 2 ( x ) co s 2 ( x ) ( cos ( x ) 1 − s in ( x ) 1 ) ′ =
s i n 2 ( x ) c o s 2 ( x ) s i n 2 ( x ) c o s 2 ( x ) + 1 − 2 s i n ( x ) c o s ( x ) ( ( 1 c o s ( x ) ) ′ − ( 1 s i n ( x ) ) ′ ) = \frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}((\frac{1}{cos(x)})'-(\frac{1}{sin(x)})')= s i n 2 ( x ) co s 2 ( x ) + 1 − 2 s in ( x ) cos ( x ) s i n 2 ( x ) co s 2 ( x ) (( cos ( x ) 1 ) ′ − ( s in ( x ) 1 ) ′ ) =
s i n 2 ( x ) c o s 2 ( x ) s i n 2 ( x ) c o s 2 ( x ) + 1 − 2 s i n ( x ) c o s ( x ) ( − ( c o s ( x ) ) ′ c o s 2 ( x ) − − ( s i n ( x ) ) ′ s i n 2 ( x ) ) = \frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{-(cos(x))'}{cos^2(x)}-\frac{-(sin(x))'}{sin^2(x)})= s i n 2 ( x ) co s 2 ( x ) + 1 − 2 s in ( x ) cos ( x ) s i n 2 ( x ) co s 2 ( x ) ( co s 2 ( x ) − ( cos ( x ) ) ′ − s i n 2 ( x ) − ( s in ( x ) ) ′ ) =
s i n 2 ( x ) c o s 2 ( x ) s i n 2 ( x ) c o s 2 ( x ) + 1 − 2 s i n ( x ) c o s ( x ) ( s i n ( x ) c o s 2 ( x ) + c o s ( x ) s i n 2 ( x ) ) = \frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{sin(x)}{cos^2(x)}+\frac{cos(x)}{sin^2(x)})= s i n 2 ( x ) co s 2 ( x ) + 1 − 2 s in ( x ) cos ( x ) s i n 2 ( x ) co s 2 ( x ) ( co s 2 ( x ) s in ( x ) + s i n 2 ( x ) cos ( x ) ) =
s i n 2 ( x ) c o s 2 ( x ) ( 1 − s i n ( x ) c o s ( x ) ) 2 s i n 3 ( x ) + c o s 3 ( x ) s i n 2 ( x ) c o s 2 ( x ) = \frac{sin^2(x)cos^2(x)}{(1-sin(x)cos(x))^2}\frac{sin^3(x)+cos^3(x)}{sin^2(x)cos^2(x)}= ( 1 − s in ( x ) cos ( x ) ) 2 s i n 2 ( x ) co s 2 ( x ) s i n 2 ( x ) co s 2 ( x ) s i n 3 ( x ) + co s 3 ( x ) =
( s i n ( x ) + c o s ( x ) ) ( s i n 2 ( x ) + c o s 2 ( x ) − s i n ( x ) c o s ( x ) ) ( 1 − s i n ( x ) c o s ( x ) ) 2 = \frac{(sin(x)+cos(x))(sin^2(x)+cos^2(x)-sin(x)cos(x))}{(1-sin(x)cos(x))^2}= ( 1 − s in ( x ) cos ( x ) ) 2 ( s in ( x ) + cos ( x )) ( s i n 2 ( x ) + co s 2 ( x ) − s in ( x ) cos ( x )) =
( s i n ( x ) + c o s ( x ) ) ( 1 − s i n ( x ) c o s ( x ) ) ( 1 − s i n ( x ) c o s ( x ) ) 2 = \frac{(sin(x)+cos(x))(1-sin(x)cos(x))}{(1-sin(x)cos(x))^2}= ( 1 − s in ( x ) cos ( x ) ) 2 ( s in ( x ) + cos ( x )) ( 1 − s in ( x ) cos ( x )) =
s i n ( x ) + c o s ( x ) 1 − s i n ( x ) c o s ( x ) \frac{sin(x)+cos(x)}{1-sin(x)cos(x)} 1 − s in ( x ) cos ( x ) s in ( x ) + cos ( x ) Answer:
s i n ( x ) + c o s ( x ) 1 − s i n ( x ) c o s ( x ) \frac{sin(x)+cos(x)}{1-sin(x)cos(x)} 1 − s in ( x ) cos ( x ) s in ( x ) + cos ( x )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments