Question #91397
Q. Which of the following function is periodic
a. sin x+sin √2x
b. sin 2x+cos 3x
c. e^xsin x
d. xsin x+cos x
1
Expert's answer
2019-07-09T12:32:53-0400

A function f: R → R is said to be periodic if there exists a number T > 0 such that f(x+T) = f(x) for all x ∈ R.

If there is a periodic functionf(x)f(x)   with period T, the function g(x)=f(kx)g(x) = f(kx)   has of period:

T=TkT^{\prime}=\frac T k

a. sin x+sin √2x  is not periodic.


y=sin(x)y= \sin (x) is a periodic function with period 2π2\pi.

y=sin(2x)y= \sin (\sqrt{2}x) is a periodic function with period 2π/2=2π2\pi/\sqrt{2}=\sqrt{2}\pi  

There is no integer, whose division by 2π2\pi and 2π\sqrt{2}\pi will give an integer.

Therefore, the function y = sin x+sin √2x is not periodic.

--------------------------------

b. sin 2x+cos 3x  is a periodic function with period 6π6\pi

y=sin(2x)y= \sin (2x) is a periodic function with period π\pi (2π2=π)(\frac {2\pi} {2}= \pi) .

y=cos(3x)y= \cos (3x) is a periodic function with period (2π3=2/3π)(\frac {2\pi} {3}= 2/3 \pi) .


y=sin(2x)+cos(3x)y= \sin (2x)+\cos (3x) is a periodic function with period 6π.6\pi.

(the period is equal to the smallest number, with division of which by π\pi and 2/3π2/3 \pi we get integer numbers).

------------------------------------------------------

c. e^x sin x  is not periodic.

y=sin(x) is a periodic function with period 2π.2\pi.

y= e^x is not periodic.

The product of functions e^x and sin x will not be a periodic function.


-----------------------------------------

d. xsin x+cos x is not periodic.


y=xsin x is not periodic. (y=x -  is not periodic, y=sin x -  is periodic 2π.2\pi. )

y=cos x is a  periodic function with period 2π.2\pi. . .

y= xsin x+cos x  is not periodic. (The sum of the non-periodic (y=xsin x ) and periodic (y=cos x) functions is not a periodic function).






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS