Question #91396
Q. Solve ∫_(-∞)^∞▒x^2 e^(-x^2 )cos xdx.
1
Expert's answer
2019-07-09T11:18:00-0400
cos(x)=n=0(1)nx2n(2n)!cos(x)=\sum_{n=0}^\infin \frac{(-1)^n x^{2n}}{(2n)!}

so


I=x2ex2cos(x)dx=I = \int_{-\infin}^{\infin} x^2 e^{-x^2} cos(x)dx==x2ex2n=0(1)nx2n(2n)!dx== \int_{-\infin}^{\infin} x^2 e^{-x^2} \sum_{n=0}^\infin \frac{(-1)^n x^{2n}}{(2n)!}dx=

=n=0(1)n(2n)!ex2x2n+2dx==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!}\int_{-\infin}^\infin e^{-x^2} x^{2n+2} dx=

=n=0(1)n(2n)!  20ex2x2n+2dx=xx==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!} \;2\int_{0}^\infin e^{-x^2} x^{2n+2} dx=|x \mapsto \sqrt{x}|=

=n=0(1)n(2n)!  21/20exxn+11/2dx==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!}\;2*1/2 \int_{0}^\infin e^{-x} x^{n+1-1/2} dx==n=0(1)n(2n)!0exxn+1/2dx==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!} \int_{0}^\infin e^{-x} x^{n+1/2} dx=

=n=0(1)n(2n)!Γ(n+3/2)==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!}\Gamma(n+3/2)=

=n=0(1)n(2n)!(n+1/2)Γ(n+1/2)==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!}(n+1/2) \Gamma(n+1/2)==n=0(1)n(2n)!(n+1/2)(2n)!4nn!π==\sum_{n=0}^\infin \frac{(-1)^n}{(2n)!} \frac{(n+1/2)(2n)!}{4^n n!} \sqrt\pi=

=n=0(1)n(n+1/2)4nn!π==\sum_{n=0}^\infin \frac{(-1)^n(n+1/2)}{4^n n!}\sqrt\pi=

=1/2πn=0(1/4)nn!+πn=0(1)nn4nn!==1/2\sqrt\pi\sum_{n=0}^\infin\frac{(-1/4)^n}{n!}+\sqrt\pi\sum_{n=0}^\infin\frac{(-1)^n n}{4^n n!}=

=1/2πn=0(1/4)nn!1/4πn=0(1)n4nn!==1/2\sqrt\pi\sum_{n=0}^\infin\frac{(-1/4)^n}{n!}-1/4\sqrt\pi\sum_{n=0}^\infin\frac{(-1)^n }{4^n n!}=

=1/4πe1/4=π4e4.=1/4\sqrt\pi e^{-1/4}=\frac{\sqrt\pi}{4\sqrt[4]{e}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS