Q. Solve ∫_(-∞)^∞▒x^2 e^(-x^2 )cos xdx.
1
2019-07-09T11:18:00-0400
cos(x)=n=0∑∞(2n)!(−1)nx2n so
I=∫−∞∞x2e−x2cos(x)dx==∫−∞∞x2e−x2n=0∑∞(2n)!(−1)nx2ndx=
=n=0∑∞(2n)!(−1)n∫−∞∞e−x2x2n+2dx=
=n=0∑∞(2n)!(−1)n2∫0∞e−x2x2n+2dx=∣x↦x∣=
=n=0∑∞(2n)!(−1)n2∗1/2∫0∞e−xxn+1−1/2dx==n=0∑∞(2n)!(−1)n∫0∞e−xxn+1/2dx=
=n=0∑∞(2n)!(−1)nΓ(n+3/2)=
=n=0∑∞(2n)!(−1)n(n+1/2)Γ(n+1/2)==n=0∑∞(2n)!(−1)n4nn!(n+1/2)(2n)!π=
=n=0∑∞4nn!(−1)n(n+1/2)π=
=1/2πn=0∑∞n!(−1/4)n+πn=0∑∞4nn!(−1)nn=
=1/2πn=0∑∞n!(−1/4)n−1/4πn=0∑∞4nn!(−1)n=
=1/4πe−1/4=44eπ.
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments