Question #90394
Find the directional derivative of x2yz+4xz2 at (1,2,1) in the direction vector 2i-j-2k.
1
Expert's answer
2019-05-30T11:14:19-0400
φ=x2yz+4xz2,a=2ij2k\varphi=x^2yz+4xz^2, a=2i-j-2k

φa=φxcosα+φycosβ+φzcosγ{\partial \varphi\over \partial a}={\partial \varphi\over \partial x}\cos\alpha+{\partial \varphi\over \partial y}\cos\beta+{\partial \varphi\over \partial z}\cos\gamma

cosα=2(2)2+(1)2+(2)2=23\cos\alpha={2 \over \sqrt{(2)^2+(-1)^2+(-2)^2}}={2 \over 3}

cosβ=1(2)2+(1)2+(2)2=13\cos\beta={-1 \over \sqrt{(2)^2+(-1)^2+(-2)^2}}=-{1 \over 3}

cosγ=2(2)2+(1)2+(2)2=23\cos\gamma={-2 \over \sqrt{(2)^2+(-1)^2+(-2)^2}}=-{2 \over 3}


φx=2xyz+4z2,φy=x2z,φz=x2y+8xz{\partial \varphi\over \partial x}=2xyz+4z^2, {\partial \varphi\over \partial y}=x^2z, {\partial \varphi\over \partial z}=x^2y+8xz




φa=23(2xyz+4z2)13(x2z)23(x2y+8xz){\partial \varphi\over \partial a}={2 \over 3}(2xyz+4z^2)-{1 \over 3}(x^2z)-{2 \over 3}(x^2y+8xz)

At point (1,2,1) we get the directional derivative:


φa(1,2,1)=23(2(2)(1)(2)+4(1)2){\partial \varphi\over \partial a}|_{(1,2,1)}={2 \over 3}(2(2)(1)(2)+4(1)^2)-

13(1)2(1)23((1)2(2)+8(1)(1))=53-{1 \over 3}(1)^2(1)-{2 \over 3}((1)^2(2)+8(1)(1))=-{5 \over 3}

φa(1,2,1)=53{\partial \varphi\over \partial a}|_{(1,2,1)}=-{5 \over 3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS