φ=x2yz+4xz2,a=2i−j−2k
∂a∂φ=∂x∂φcosα+∂y∂φcosβ+∂z∂φcosγ
cosα=(2)2+(−1)2+(−2)22=32
cosβ=(2)2+(−1)2+(−2)2−1=−31
cosγ=(2)2+(−1)2+(−2)2−2=−32
∂x∂φ=2xyz+4z2,∂y∂φ=x2z,∂z∂φ=x2y+8xz
∂a∂φ=32(2xyz+4z2)−31(x2z)−32(x2y+8xz) At point (1,2,1) we get the directional derivative:
∂a∂φ∣(1,2,1)=32(2(2)(1)(2)+4(1)2)−
−31(1)2(1)−32((1)2(2)+8(1)(1))=−35
∂a∂φ∣(1,2,1)=−35
Comments