f(x)=∫2x[3(t−2)(t−3)3+2(t−2)2(t−3)2]dt Domain: R
f′(x)=[3(x−2)(x−3)3+2(x−2)2(x−3)2]⋅1−0=
=(x−2)(x−3)2(3x−9+2x−4)=(x−2)(x−3)2(5x−13) Find the critical number(s):
f′(x)=0=>(x−2)(x−3)2(5x−13)=0
x1=2,x2=513,x3=3 First Derivative Test
If x<2,f′(x)>0,f(x) increases
If 2<x<2.6,f′(x)<0,f(x) decreases
If 2.6<x<3,f′(x)>0,f(x) increases
If x>3,f′(x)>0,f(x) increases
∫[3(t−2)(t−3)3+2(t−2)2(t−3)2]dt=
=3∫(t−3)4dt+3∫(t−3)3dt+
+2∫(t−3)4dt+4∫(t−3)3dt+2∫(t−3)2dt=
=(t−3)5+47(t−3)4+32(t−3)3+C
f(x)=∫2x[3(t−2)(t−3)3+2(t−2)2(t−3)2]dt=
=(x−3)5+47(x−3)4+32(x−3)3−121
f(2)=0
f(2.6)=−0.09144The function f(x) has a local maximum with value of at x=2.
The function f(x) has a local minimum with value of (−0.09144) at x=2.6.
Comments