Question #89470
Find all the maxima and minima of the
function f given by
f(x)= integration of [3(t-2)(t-3)^3 + 2(t-2)^2 (t-3)^2] dt. In the limit 2 to x
1
Expert's answer
2019-05-09T13:40:22-0400
f(x)=2x[3(t2)(t3)3+2(t2)2(t3)2]dtf(x)=\displaystyle\int_{2}^x[3(t-2)(t-3)^3+2(t-2)^2(t-3)^2]dt

Domain: R\R


f(x)=[3(x2)(x3)3+2(x2)2(x3)2]10=f'(x)=[3(x-2)(x-3)^3+2(x-2)^2(x-3)^2]\cdot1-0=

=(x2)(x3)2(3x9+2x4)=(x2)(x3)2(5x13)=(x-2)(x-3)^2(3x-9+2x-4)=(x-2)(x-3)^2(5x-13)

Find the critical number(s):


f(x)=0=>(x2)(x3)2(5x13)=0f'(x)=0=>(x-2)(x-3)^2(5x-13)=0

x1=2,x2=135,x3=3x_1=2, x_2={13 \over 5}, x_3=3

First Derivative Test


If x<2,f(x)>0,f(x) increasesIf\ x<2, f'(x)>0, f(x)\ increases




If 2<x<2.6,f(x)<0,f(x) decreasesIf\ 2<x<2.6, f'(x)<0, f(x)\ decreases

If 2.6<x<3,f(x)>0,f(x) increasesIf\ 2.6<x<3, f'(x)>0, f(x)\ increases

If x>3,f(x)>0,f(x) increasesIf\ x>3, f'(x)>0, f(x)\ increases

[3(t2)(t3)3+2(t2)2(t3)2]dt=\int[3(t-2)(t-3)^3+2(t-2)^2(t-3)^2]dt=

=3(t3)4dt+3(t3)3dt+=3\int(t-3)^4dt+3\int(t-3)^3dt+

+2(t3)4dt+4(t3)3dt+2(t3)2dt=+2\int(t-3)^4dt+4\int(t-3)^3dt+2\int(t-3)^2dt=

=(t3)5+74(t3)4+23(t3)3+C=(t-3)^5+{7 \over 4}(t-3)^4+{2 \over 3}(t-3)^3+C

f(x)=2x[3(t2)(t3)3+2(t2)2(t3)2]dt=f(x)=\displaystyle\int_{2}^x[3(t-2)(t-3)^3+2(t-2)^2(t-3)^2]dt=

=(x3)5+74(x3)4+23(x3)3112=(x-3)^5+{7 \over 4}(x-3)^4+{2 \over 3}(x-3)^3-{1 \over 12}

f(2)=0f(2)=0

f(2.6)=0.09144f(2.6)=-0.09144

The function f(x) has a local maximum with value of at x=2.x=2.

The function f(x) has a local minimum with value of (0.09144)(-0.09144) at x=2.6.x=2.6.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS