Solution. Using mean value theorem: Suppose f(x) is a function that satisfies all of the following.
1) f(x) is continuous on the closed interval [a;b].
2) f(x) is differentiable on the open interval (a;b).
Then there is a number c such that a<c<b and
f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c)=\frac {f(b)-f(a)} {b-a} f ′ ( c ) = b − a f ( b ) − f ( a )
Function f(x)=(x+1)^3 is continuous on the closed interval [-1,1] and f(x) is differentiable on the open interval (-1,1).
f ( − 1 ) = ( − 1 + 1 ) 3 = 0 f(-1)=(-1+1)^3=0 f ( − 1 ) = ( − 1 + 1 ) 3 = 0
f ( 1 ) = ( 1 + 1 ) 3 = 8 f(1)=(1+1)^3=8 f ( 1 ) = ( 1 + 1 ) 3 = 8 Therefore
f ′ ( c ) = 8 − 0 1 − ( − 1 ) = 4 f'(c)=\frac {8-0} {1-(-1)}=4 f ′ ( c ) = 1 − ( − 1 ) 8 − 0 = 4
Find the first derivative of the function f(x).
f ′ ( x ) = 3 ( x + 1 ) 2 f'(x)=3(x+1)^2 f ′ ( x ) = 3 ( x + 1 ) 2 As result get equation
3 ( x + 1 ) 2 = 4 3(x+1)^2=4 3 ( x + 1 ) 2 = 4 Find the roots of the equation.
x + 1 = 2 3 ⟹ x 1 = − 1 + 2 3 x+1=\frac {2} {\sqrt {3}} \Longrightarrow x_1=-1+\frac {2} {\sqrt {3}} x + 1 = 3 2 ⟹ x 1 = − 1 + 3 2
x 1 ∈ ( − 1 , 1 ) x_1 \isin (-1,1) x 1 ∈ ( − 1 , 1 )
x + 1 = − 2 3 ⟹ x 2 = − 1 − 2 3 x+1=-\frac {2} {\sqrt {3}} \Longrightarrow x_2=-1-\frac {2} {\sqrt {3}} x + 1 = − 3 2 ⟹ x 2 = − 1 − 3 2
x 2 ∉ ( − 1 , 1 ) x_2 \notin (-1,1) x 2 ∈ / ( − 1 , 1 )
Answer.
− 1 + 2 3 -1+\frac {2} {\sqrt {3}} − 1 + 3 2
Comments