According to the mean value theorem: Suppose f(x) is a function that satisfies both of the following.
f(x) is continuous on the closed interval [a;b] f(x) is differentiable on the open interval (a;b). Then there is a number c such that a < c < b and
f ′ ( c ) = f ( b ) − f ( a ) b − a . f'(c)=\frac {f(b)-f(a)} {b-a}. f ′ ( c ) = b − a f ( b ) − f ( a ) . Function g(x)=(x-4)/(x-3) is continuous on the closed interval [4,6] and is differentiable on the open interval (4;6).
Therefore
g ′ ( c ) = g ( 6 ) − g ( 4 ) 6 − 4 . g'(c)=\frac {g(6)-g(4)} {6-4}. g ′ ( c ) = 6 − 4 g ( 6 ) − g ( 4 ) .
g ( 6 ) = 6 − 4 6 − 3 = 2 3 g(6)= \frac {6-4} {6-3}= \frac {2} {3} g ( 6 ) = 6 − 3 6 − 4 = 3 2
g ( 4 ) = 4 − 4 4 − 3 = 0 g(4)= \frac {4-4} {4-3}= 0 g ( 4 ) = 4 − 3 4 − 4 = 0 As result get
g ′ ( c ) = 2 3 − 0 6 − 4 = 1 3 g'(c)=\frac {\frac {2} {3} -0} {6-4}=\frac {1} {3} g ′ ( c ) = 6 − 4 3 2 − 0 = 3 1 On the other hand
g ′ ( x ) = ( x − 4 x − 3 ) ′ = 1 ∗ ( x − 3 ) − 1 ∗ ( x − 4 ) ( x − 3 ) 2 g'(x)=(\frac {x-4} {x-3})'=\frac {1*(x-3)-1*(x-4)} {(x-3)^2} g ′ ( x ) = ( x − 3 x − 4 ) ′ = ( x − 3 ) 2 1 ∗ ( x − 3 ) − 1 ∗ ( x − 4 )
g ′ ( x ) = x − 3 − x + 4 ( x − 3 ) 2 = 1 ( x − 3 ) 2 g'(x)=\frac {x-3-x+4} {(x-3)^2}=\frac {1} {(x-3)^2} g ′ ( x ) = ( x − 3 ) 2 x − 3 − x + 4 = ( x − 3 ) 2 1 Therefore
g ′ ( c ) = 1 ( c − 3 ) 2 = 1 3 g'(c)=\frac {1} {(c-3)^2}=\frac {1} {3} g ′ ( c ) = ( c − 3 ) 2 1 = 3 1 Solve the equation
( с − 3 ) 2 = 3 (с-3)^2=3 ( с − 3 ) 2 = 3
c − 3 = 3 ⟹ с = 3 + 3 ∈ [ 4 ; 6 ] c-3=\sqrt {3} \Longrightarrow с=3+\sqrt {3} \isin [4;6] c − 3 = 3 ⟹ с = 3 + 3 ∈ [ 4 ; 6 ]
c − 3 = − 3 ⟹ с = 3 − 3 ∉ [ 4 ; 6 ] c-3=-\sqrt {3} \Longrightarrow с=3-\sqrt {3} \notin [4;6] c − 3 = − 3 ⟹ с = 3 − 3 ∈ / [ 4 ; 6 ] Hence
с = 3 + 3 с=3+\sqrt {3} с = 3 + 3
Answer.
с = 3 + 3 с=3+\sqrt {3} с = 3 + 3
Comments