Question #88343
Evaluate the following integrals:
ii) ∫ ln(x+1)/(√x+1)dx
1
Expert's answer
2019-04-29T10:21:35-0400

Solution. We use the integration formula in parts


ln(x+1)x+1dx=u=ln(x+1)dv=dxx+1du=dxx+1v=2x+1=\int \frac {ln(x+1)} {\sqrt{x+1}}dx= \begin{vmatrix} u=ln(x+1) & dv=\frac {dx} {\sqrt{x+1}} \\ du=\frac {dx}{x+1} & v=2\sqrt{x+1} \end{vmatrix}=

=2x+1ln(x+1)2x+1x+1dx==2\sqrt{x+1}*ln(x+1)-\int \frac{2\sqrt{x+1}}{x+1}dx=

=2x+1ln(x+1)2x+1dx==2\sqrt{x+1}*ln(x+1)-\int \frac{2} {\sqrt{x+1}}dx=


=2x+1ln(x+1)4x+1+C=2\sqrt{x+1}*ln(x+1)-4\sqrt{x+1}+C

where C is constant.

Answer.


2x+1ln(x+1)4x+1+C2\sqrt{x+1}*ln(x+1)-4\sqrt{x+1}+C

where C is constant.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS