Question #87785
Check the function f(x)=[2x-1, 0≤x≤1
[1, x>1
for continuity and differentiability at x =1
1
Expert's answer
2019-04-16T09:43:34-0400

limx1f(x)=limx1+f(x)=1  so,  f(x)  is  continuous  at  x=1lim1f(x)f(1)x1=lim12(x1)x1=2,lim1+f(x)f(1)x1=0so,  f(x)  is  not  differentiable  at  x=1.\lim_{x\to 1^-}f(x)=\lim_{x\to 1^+}f(x)=1\:\;so,\;f(x)\;is\;continuous\;at\;x=1\\ \lim_{\to 1^-}\frac{f(x)-f(1)}{x-1}=\lim_{\to 1^-}\frac{2(x-1)}{x-1}=2, \lim_{\to 1^+}\frac{f(x)-f(1)}{x-1}=0\\ so,\;f(x)\;is\;not\;differentiable\;at\;x=1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS