Question #87391
Find the maclaurent series of arctan x
1
Expert's answer
2019-04-03T10:05:25-0400

To obtain the maclaurent series of arctan x, use the standard integral

arctanx=0xdt1+t2\arctan x=\int_{0}^{x}{\frac{dt}{1+{{t}^{2}}}}

Consider the sum of a geometric series

11+t2=11(t2)=1t2+t4t6+...\frac{1}{1+{{t}^{2}}}=\frac{1}{1-\left( -{{t}^{2}} \right)}=1-{{t}^{2}}+{{t}^{4}}-{{t}^{6}}+...

Substituting this sum into the integral, we obtain

0xdt1+t2=0x(1t2+t4t6+...)dt\int_{0}^{x}{\frac{dt}{1+{{t}^{2}}}}=\int_{0}^{x}{\left( 1-{{t}^{2}}+{{t}^{4}}-{{t}^{6}}+... \right)dt}

=(tt33+t55t77+...)0x=xx33+x55x77+...=\left( t-\frac{{{t}^{3}}}{3}+\frac{{{t}^{5}}}{5}-\frac{{{t}^{7}}}{7}+... \right)_{0}^{x}=x-\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}-\frac{{{x}^{7}}}{7}+...

Thus

arctanx=xx33+x55x77+...\arctan x=x-\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}-\frac{{{x}^{7}}}{7}+...

or


arctanx=n=0(1)nx2n+12n+1\arctan x=\sum\limits_{n=0}^{\infty }{{{\left( -1 \right)}^{n}}\frac{{{x}^{2n+1}}}{2n+1}}

for

x1\left| x \right|\le 1

This is the Maclaurent series of arctan x.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS