f(x)=∣x3−3x2+2∣f′(x)=(x3−3x2+2)∗(x3−3x2+2)′/∣x3−3x+2∣
f′(x)=(x3−3x2+2)∗3x∗(x−2)/∣x3−3x2+2∣
Critical numbers are number where f'(x)=0 or not exist
(x3−3x2+2)∗3x∗(x−2)/∣x3−3x2+2∣=0
x=0x=2 f'(x) not exist at:
x3−3x2+2=0
x3−3x2+2=(x−1)(x2−2x−2)=0
x=1
x2−2x−2=0
D=4−4∗(−2)=12
x=(2±12)/2=1±31+3≈2.7
1−3≈−0.7 So, the numbers in increasing order:
1−3;0;1;2;1+3
Comments