Question #86643
Find the critical numbers of
f(x)=|x3−3x2+2|
|Enter the points in increasing order and enter N into any blank you don't need to use.
1
Expert's answer
2019-03-20T09:55:57-0400
f(x)=x33x2+2f(x)=|x^3-3x^2+2|f(x)=(x33x2+2)(x33x2+2)/x33x+2f'(x)=(x^3-3x^2+2)*(x^3-3x^2+2)'/|x^3-3x+2|

f(x)=(x33x2+2)3x(x2)/x33x2+2f'(x)=(x^3-3x^2+2)*3x*(x-2)/|x^3-3x^2+2|



Critical numbers are number where f'(x)=0 or not exist


(x33x2+2)3x(x2)/x33x2+2=0(x^3-3x^2+2)*3x*(x-2)/|x^3-3x^2+2|=0

x=0x=0x=2x=2

f'(x) not exist at:


x33x2+2=0x^3-3x^2+2=0

x33x2+2=(x1)(x22x2)=0x^3-3x^2+2=(x-1)(x^2-2x-2)=0

x=1x=1

x22x2=0x^2-2x-2=0

D=44(2)=12D=4-4*(-2)=12

x=(2±12)/2=1±3x=(2\pm\sqrt{12})/2=1\pm\sqrt{3}1+32.71+\sqrt{3}\approx2.7

130.71-\sqrt{3}\approx-0.7

So, the numbers in increasing order:


13;0;1;2;1+31-\sqrt{3}; 0; 1; 2; 1+\sqrt{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS