f ( x ) = ∣ x 3 − 3 x 2 + 2 ∣ f(x)=|x^3-3x^2+2| f ( x ) = ∣ x 3 − 3 x 2 + 2∣ f ′ ( x ) = ( x 3 − 3 x 2 + 2 ) ∗ ( x 3 − 3 x 2 + 2 ) ′ / ∣ x 3 − 3 x + 2 ∣ f'(x)=(x^3-3x^2+2)*(x^3-3x^2+2)'/|x^3-3x+2| f ′ ( x ) = ( x 3 − 3 x 2 + 2 ) ∗ ( x 3 − 3 x 2 + 2 ) ′ /∣ x 3 − 3 x + 2∣
f ′ ( x ) = ( x 3 − 3 x 2 + 2 ) ∗ 3 x ∗ ( x − 2 ) / ∣ x 3 − 3 x 2 + 2 ∣ f'(x)=(x^3-3x^2+2)*3x*(x-2)/|x^3-3x^2+2| f ′ ( x ) = ( x 3 − 3 x 2 + 2 ) ∗ 3 x ∗ ( x − 2 ) /∣ x 3 − 3 x 2 + 2∣
Critical numbers are number where f'(x)=0 or not exist
( x 3 − 3 x 2 + 2 ) ∗ 3 x ∗ ( x − 2 ) / ∣ x 3 − 3 x 2 + 2 ∣ = 0 (x^3-3x^2+2)*3x*(x-2)/|x^3-3x^2+2|=0 ( x 3 − 3 x 2 + 2 ) ∗ 3 x ∗ ( x − 2 ) /∣ x 3 − 3 x 2 + 2∣ = 0
x = 0 x=0 x = 0 x = 2 x=2 x = 2 f'(x) not exist at:
x 3 − 3 x 2 + 2 = 0 x^3-3x^2+2=0 x 3 − 3 x 2 + 2 = 0
x 3 − 3 x 2 + 2 = ( x − 1 ) ( x 2 − 2 x − 2 ) = 0 x^3-3x^2+2=(x-1)(x^2-2x-2)=0 x 3 − 3 x 2 + 2 = ( x − 1 ) ( x 2 − 2 x − 2 ) = 0
x = 1 x=1 x = 1
x 2 − 2 x − 2 = 0 x^2-2x-2=0 x 2 − 2 x − 2 = 0
D = 4 − 4 ∗ ( − 2 ) = 12 D=4-4*(-2)=12 D = 4 − 4 ∗ ( − 2 ) = 12
x = ( 2 ± 12 ) / 2 = 1 ± 3 x=(2\pm\sqrt{12})/2=1\pm\sqrt{3} x = ( 2 ± 12 ) /2 = 1 ± 3 1 + 3 ≈ 2.7 1+\sqrt{3}\approx2.7 1 + 3 ≈ 2.7
1 − 3 ≈ − 0.7 1-\sqrt{3}\approx-0.7 1 − 3 ≈ − 0.7 So, the numbers in increasing order:
1 − 3 ; 0 ; 1 ; 2 ; 1 + 3 1-\sqrt{3}; 0; 1; 2; 1+\sqrt{3} 1 − 3 ; 0 ; 1 ; 2 ; 1 + 3
Comments