Question #86640
Draw the graph of the function f :R---R :f(x)= x^2-6x+5. Obtain the coordinates of the point at which the graph meets the x and y axes.
1
Expert's answer
2019-03-20T09:58:42-0400

Solution:

If the function

f:RRf:R\mapsto{R}

and

f(x)=x26x+5f(x)=x^2-6x+5

then the graph of the function looks like this



where


(1;0),(5;0)(1;0), (5;0)

are the points at which the graph meets the x axis because

x26x+5=0,D=3620=16,x^2-6x+5=0,D=36-20=16,

x1=6162=1,x2=6+162=5;x_1=\frac{6-\sqrt{16}}{2}=1, x_2=\frac{6+\sqrt{16}}{2}=5;

and


(0;5)(0;5)

is the points at which the graph meets the y axis because


0260+5=5.0^2-{6}\cdot{0}+5=5.

Answer:


(1;0),(5;0),(0;5)(1;0),(5;0),(0;5)

are the points at which graph meets the x and y axes.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
20.03.19, 18:14

Dear Swati malik. The solution of the question was published.

Swati malik
20.03.19, 08:03

Please be hurry. You are very late.

LATEST TUTORIALS
APPROVED BY CLIENTS