Question #86240
Obtain the Fourier cosine series for the following function:

{1for 0≤ x<1
0 for 1≤ x <4 }
1
Expert's answer
2019-03-14T04:02:48-0400

Solution:

If

f(x)={1 if 0x<10if 1≤ x <4 f(x)=\begin{cases} 1 &\text{ if } 0≤ x<1 \\ 0 &\text{if 1≤ x <4 } \end{cases}

then the Fourier cosine series for this function is:


f(x)=a02+n=1ancosnπx4,f(x)=\frac {a_0}{2}+{\displaystyle\sum_{n=1}^\infin}a_ncos\frac{n{\pi}x}{4},




0x<4,0≤ x<4,

where


a0=12011dx+12140dx=12a_0=\frac{1}{2}{\smallint_0}^1 1dx+\frac{1}{2}{\smallint_1}^4 0dx=\frac{1}{2}

and


an=12011cosnπx4dx+12140cosnπx4dx=2nπsinnπ4.a_n=\frac{1}{2}{\smallint_0}^1 1cos\frac{n{\pi}x}{4}dx+\frac{1}{2}{\smallint_1}^4 0cos\frac{n{\pi}x}{4}dx=\frac{2}{n{\pi}}sin\frac{n{\pi}}{4}.

or


f(x)=14+2n=11nπsinnπ4cosnπx4,f(x)=\frac {1}{4}+2{\displaystyle\sum_{n=1}^\infin}\frac{1}{n{\pi}}sin\frac{n{\pi}}{4}cos\frac{n{\pi}x}{4},0x<4.0≤ x<4.

Answer:

f(x)=14+2n=11nπsinnπ4cosnπx4,f(x)=\frac {1}{4}+2{\displaystyle\sum_{n=1}^\infin}\frac{1}{n{\pi}}sin\frac{n{\pi}}{4}cos\frac{n{\pi}x}{4},

0x<4.0≤ x<4.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
28.03.19, 10:02

The formula sin(nπ/4) is general, it can be splitted into several cases, namely, sin(nπ/4)=sqrt(2)/2 if n=1+8m or n=3+8m, sin(nπ/4)=1 if n=2+8m, sin(nπ/4)=-sqrt(2)/2 if n=5+8m or n=7+8m,sin(nπ/4)=-1 if n=6+8m, sin(nπ/4)=0 if n=4+8m or n=8m, where m is integer.

Raghav
28.03.19, 09:45

how can we put the general value of sin(nπ/4) now?

LATEST TUTORIALS
APPROVED BY CLIENTS