Solution:
If
f(x)={10 if 0≤x<1if 1≤ x <4 then the Fourier cosine series for this function is:
f(x)=2a0+n=1∑∞ancos4nπx,
0≤x<4,
where
a0=210∫11dx+211∫40dx=21 and
an=210∫11cos4nπxdx+211∫40cos4nπxdx=nπ2sin4nπ. or
f(x)=41+2n=1∑∞nπ1sin4nπcos4nπx,0≤x<4. Answer:
f(x)=41+2n=1∑∞nπ1sin4nπcos4nπx,
0≤x<4.
Comments
The formula sin(nπ/4) is general, it can be splitted into several cases, namely, sin(nπ/4)=sqrt(2)/2 if n=1+8m or n=3+8m, sin(nπ/4)=1 if n=2+8m, sin(nπ/4)=-sqrt(2)/2 if n=5+8m or n=7+8m,sin(nπ/4)=-1 if n=6+8m, sin(nπ/4)=0 if n=4+8m or n=8m, where m is integer.
how can we put the general value of sin(nπ/4) now?