Question #85732
Find the mass and centre of gravity of a triangular lamina with vertices (0,0), (1,0)and (0,2) if the density function is given by d(x, y) =1+ 3x + y.
1
Expert's answer
2019-03-05T11:51:44-0500

Solution

Equation of the hypotenuse of a right triangle have form

y(x)=22xy(x)=2-2x


So mass of the triangular lamina

M=Dd(x,y)dxdy=01dx022xd(x,y)dy=M=\int\int\limits_{D}d(x,y)dxdy=\int\limits_{0}^{1}dx\int\limits_{0}^{2-2x}d(x,y)dy==01dx022x(1+3x+y)dy=01dx12(1+3x+y)2022x=01dx12[(3x)2(1+3x)2]==\int\limits_{0}^{1}dx\int\limits_{0}^{2-2x}(1+ 3x + y)dy=\int\limits_{0}^{1}dx\frac12 (1+ 3x + y)^2\big|_0^{2-2x}=\int\limits_{0}^{1}dx\frac12 \big[(3-x)^2-(1+3x)^2\big]=E=mc2E=mc^2=01dx(44x2)=83=\int\limits_{0}^{1}dx(4-4x^2)=\frac83

centre of gravity

My=1MDyd(x,y)dxdy=1M0116y2(3+9x+2y)022x=M_y=\frac1M\int\int\limits_{D}yd(x,y)dxdy=\frac1M\int\limits_0^{1}\frac16 y^2 (3 + 9 x + 2 y)\big|_{0}^{2-2x}=

=380123(1+x)2(7+5x)dx=38116=1116=\frac38\int\limits_0^{1}\frac23 (-1 + x)^2 (7 + 5 x)dx=\frac38\frac{11}{6}=\frac{11}{16}

Mx=1MDxd(x,y)dxdy=3801dx(44x2)x=38M_x=\frac1M\int\int\limits_{D}xd(x,y)dxdy=\frac38\int\limits_{0}^{1}dx(4-4x^2)x=\frac38

Answer: centre of gravity (Mx,My)=(38,1116)(M_x,M_y)=(\frac38,\frac{11}{16})

Mass: M=83M=\frac83


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS