Solution
Equation of the hypotenuse of a right triangle have form
y ( x ) = 2 − 2 x y(x)=2-2x y ( x ) = 2 − 2 x
So mass of the triangular lamina
M = ∫ ∫ D d ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 2 − 2 x d ( x , y ) d y = M=\int\int\limits_{D}d(x,y)dxdy=\int\limits_{0}^{1}dx\int\limits_{0}^{2-2x}d(x,y)dy= M = ∫ D ∫ d ( x , y ) d x d y = 0 ∫ 1 d x 0 ∫ 2 − 2 x d ( x , y ) d y = = ∫ 0 1 d x ∫ 0 2 − 2 x ( 1 + 3 x + y ) d y = ∫ 0 1 d x 1 2 ( 1 + 3 x + y ) 2 ∣ 0 2 − 2 x = ∫ 0 1 d x 1 2 [ ( 3 − x ) 2 − ( 1 + 3 x ) 2 ] = =\int\limits_{0}^{1}dx\int\limits_{0}^{2-2x}(1+ 3x + y)dy=\int\limits_{0}^{1}dx\frac12 (1+ 3x + y)^2\big|_0^{2-2x}=\int\limits_{0}^{1}dx\frac12 \big[(3-x)^2-(1+3x)^2\big]= = 0 ∫ 1 d x 0 ∫ 2 − 2 x ( 1 + 3 x + y ) d y = 0 ∫ 1 d x 2 1 ( 1 + 3 x + y ) 2 ∣ ∣ 0 2 − 2 x = 0 ∫ 1 d x 2 1 [ ( 3 − x ) 2 − ( 1 + 3 x ) 2 ] = E = m c 2 E=mc^2 E = m c 2 = ∫ 0 1 d x ( 4 − 4 x 2 ) = 8 3 =\int\limits_{0}^{1}dx(4-4x^2)=\frac83 = 0 ∫ 1 d x ( 4 − 4 x 2 ) = 3 8 centre of gravity
M y = 1 M ∫ ∫ D y d ( x , y ) d x d y = 1 M ∫ 0 1 1 6 y 2 ( 3 + 9 x + 2 y ) ∣ 0 2 − 2 x = M_y=\frac1M\int\int\limits_{D}yd(x,y)dxdy=\frac1M\int\limits_0^{1}\frac16 y^2 (3 + 9 x + 2 y)\big|_{0}^{2-2x}= M y = M 1 ∫ D ∫ y d ( x , y ) d x d y = M 1 0 ∫ 1 6 1 y 2 ( 3 + 9 x + 2 y ) ∣ ∣ 0 2 − 2 x =
= 3 8 ∫ 0 1 2 3 ( − 1 + x ) 2 ( 7 + 5 x ) d x = 3 8 11 6 = 11 16 =\frac38\int\limits_0^{1}\frac23 (-1 + x)^2 (7 + 5 x)dx=\frac38\frac{11}{6}=\frac{11}{16} = 8 3 0 ∫ 1 3 2 ( − 1 + x ) 2 ( 7 + 5 x ) d x = 8 3 6 11 = 16 11
M x = 1 M ∫ ∫ D x d ( x , y ) d x d y = 3 8 ∫ 0 1 d x ( 4 − 4 x 2 ) x = 3 8 M_x=\frac1M\int\int\limits_{D}xd(x,y)dxdy=\frac38\int\limits_{0}^{1}dx(4-4x^2)x=\frac38 M x = M 1 ∫ D ∫ x d ( x , y ) d x d y = 8 3 0 ∫ 1 d x ( 4 − 4 x 2 ) x = 8 3 Answer: centre of gravity ( M x , M y ) = ( 3 8 , 11 16 ) (M_x,M_y)=(\frac38,\frac{11}{16}) ( M x , M y ) = ( 8 3 , 16 11 )
Mass: M = 8 3 M=\frac83 M = 3 8
Comments