A sketch the region D is follow:
.5 y = x ⇒ y = x 5 5y=x \rArr y=\frac{x}{5} 5 y = x ⇒ y = 5 x
Point of intersection:
x 5 = z ⇒ x = 5 z \frac{x}{5}=z \rArr x=5z 5 x = z ⇒ x = 5 z
The region D: { ( x , y ) : 0 ≤ x ≤ 5 z , x 5 ≤ y ≤ z } \lbrace (x, y): 0 \le x \le 5z, \;\frac{x}{5} \le y \le z \rbrace {( x , y ) : 0 ≤ x ≤ 5 z , 5 x ≤ y ≤ z }
I = ∬ D ( 2 x y + 5 e x ) d A = ∫ 0 5 z ( ∫ x 5 z ( 2 x y + 5 e x ) d y ) d x = ∫ 0 5 z ( ( x y 2 + 5 y e x ) ∣ x 5 z ) d x = ∫ 0 5 z ( x z 2 + 5 z e x − x 3 25 − x e x ) d x = I 1 + I 2 + I 3 + I 4 I=\iint_D(2xy+5e^x)dA=\int^{5z}_0(\int^{z}_{\frac{x}{5}}(2xy+5e^x)dy)dx=\int^{5z}_0((xy^2+5ye^x)\vert ^{z}_{\frac{x}{5}})dx=\int^{5z}_0(xz^2+5ze^x-\frac{x^3}{25}-xe^x)dx=I_{1}+I_{2}+I_{3}+I_{4} I = ∬ D ( 2 x y + 5 e x ) d A = ∫ 0 5 z ( ∫ 5 x z ( 2 x y + 5 e x ) d y ) d x = ∫ 0 5 z (( x y 2 + 5 y e x ) ∣ 5 x z ) d x = ∫ 0 5 z ( x z 2 + 5 z e x − 25 x 3 − x e x ) d x = I 1 + I 2 + I 3 + I 4
I 1 = z 2 ∫ 0 5 z x d x = z 2 ( x 2 2 ) ∣ 0 5 z = 25 z 4 2 I_{1}=z^2\int^{5z}_0xdx=z^2(\frac{x^2}{2})\vert ^{5z}_{0}=\frac{25z^4}{2} I 1 = z 2 ∫ 0 5 z x d x = z 2 ( 2 x 2 ) ∣ 0 5 z = 2 25 z 4
I 2 = 5 z ∫ 0 5 z e x d x = 5 z ( e x ) ∣ 0 5 z = 5 z e 5 z − 5 z I_{2}=5z\int^{5z}_0e^xdx=5z(e^x)\vert ^{5z}_{0}=5ze^{5z}-5z I 2 = 5 z ∫ 0 5 z e x d x = 5 z ( e x ) ∣ 0 5 z = 5 z e 5 z − 5 z
I 3 = − 1 25 ∫ 0 5 z x 3 d x = − 1 25 ( x 4 4 ) ∣ 0 5 z = 625 z 4 100 = 25 z 4 4 I_{3}=-\frac{1}{25}\int^{5z}_0x^3dx=-\frac{1}{25}(\frac{x^4}{4})\vert ^{5z}_{0}=\frac{625z^4}{100}=\frac{25z^4}{4} I 3 = − 25 1 ∫ 0 5 z x 3 d x = − 25 1 ( 4 x 4 ) ∣ 0 5 z = 100 625 z 4 = 4 25 z 4
I 4 = − ∫ 0 5 z x e x d x = { u = x d u = d x d v = e x d x v = e x } = − ( x e x ) ∣ 0 5 z + ∫ 0 5 z e x d x = − 5 z e 5 z + ( e x ) ∣ 0 5 z = − 5 z e 5 z + e 5 z − 1 I_{4}=-\int^{5z}_0xe^xdx=\begin{Bmatrix}
u=x & du=dx \\
dv=e^xdx & v=e^x
\end{Bmatrix}=-(xe^x)\vert^{5z}_0+\int^{5z}_0e^xdx=-5ze^{5z}+(e^x)\vert^{5z}_0=-5ze^{5z}+e^{5z}-1 I 4 = − ∫ 0 5 z x e x d x = { u = x d v = e x d x d u = d x v = e x } = − ( x e x ) ∣ 0 5 z + ∫ 0 5 z e x d x = − 5 z e 5 z + ( e x ) ∣ 0 5 z = − 5 z e 5 z + e 5 z − 1
I = 25 z 4 2 + 5 z e 5 z − 5 z + 25 z 4 4 − 5 z e 5 z + e 5 z − 1 = 50 z 4 4 + 5 z e 5 z − 5 z + 25 z 4 4 − 5 z e 5 z + e 5 z − 1 = e 5 z + 75 z 4 4 − 5 z − 1 I=\frac{25z^4}{2}+5ze^{5z}-5z+\frac{25z^4}{4}-5ze^{5z}+e^{5z}-1=\frac{50z^4}{4}+\cancel{5ze^{5z}}-5z+\frac{25z^4}{4}-\cancel{5ze^{5z}}+e^{5z}-1=e^{5z}+\frac{75z^4}{4}-5z-1 I = 2 25 z 4 + 5 z e 5 z − 5 z + 4 25 z 4 − 5 z e 5 z + e 5 z − 1 = 4 50 z 4 + 5 z e 5 z − 5 z + 4 25 z 4 − 5 z e 5 z + e 5 z − 1 = e 5 z + 4 75 z 4 − 5 z − 1
Comments