Question #85731
Obtain the double integral of the function, f (x, y) = 2xy + 5exponential x over the region
bounded by the triangle formed by the y-axis and the lines 5y=x and y=z
1
Expert's answer
2019-03-06T09:29:27-0500

A sketch the region D is follow:



.5y=xy=x55y=x \rArr y=\frac{x}{5}

Point of intersection:

x5=zx=5z\frac{x}{5}=z \rArr x=5z

The region D: {(x,y):0x5z,  x5yz}\lbrace (x, y): 0 \le x \le 5z, \;\frac{x}{5} \le y \le z \rbrace

I=D(2xy+5ex)dA=05z(x5z(2xy+5ex)dy)dx=05z((xy2+5yex)x5z)dx=05z(xz2+5zexx325xex)dx=I1+I2+I3+I4I=\iint_D(2xy+5e^x)dA=\int^{5z}_0(\int^{z}_{\frac{x}{5}}(2xy+5e^x)dy)dx=\int^{5z}_0((xy^2+5ye^x)\vert ^{z}_{\frac{x}{5}})dx=\int^{5z}_0(xz^2+5ze^x-\frac{x^3}{25}-xe^x)dx=I_{1}+I_{2}+I_{3}+I_{4}

I1=z205zxdx=z2(x22)05z=25z42I_{1}=z^2\int^{5z}_0xdx=z^2(\frac{x^2}{2})\vert ^{5z}_{0}=\frac{25z^4}{2}

I2=5z05zexdx=5z(ex)05z=5ze5z5zI_{2}=5z\int^{5z}_0e^xdx=5z(e^x)\vert ^{5z}_{0}=5ze^{5z}-5z

I3=12505zx3dx=125(x44)05z=625z4100=25z44I_{3}=-\frac{1}{25}\int^{5z}_0x^3dx=-\frac{1}{25}(\frac{x^4}{4})\vert ^{5z}_{0}=\frac{625z^4}{100}=\frac{25z^4}{4}

I4=05zxexdx={u=xdu=dxdv=exdxv=ex}=(xex)05z+05zexdx=5ze5z+(ex)05z=5ze5z+e5z1I_{4}=-\int^{5z}_0xe^xdx=\begin{Bmatrix} u=x & du=dx \\ dv=e^xdx & v=e^x \end{Bmatrix}=-(xe^x)\vert^{5z}_0+\int^{5z}_0e^xdx=-5ze^{5z}+(e^x)\vert^{5z}_0=-5ze^{5z}+e^{5z}-1

I=25z42+5ze5z5z+25z445ze5z+e5z1=50z44+5ze5z5z+25z445ze5z+e5z1=e5z+75z445z1I=\frac{25z^4}{2}+5ze^{5z}-5z+\frac{25z^4}{4}-5ze^{5z}+e^{5z}-1=\frac{50z^4}{4}+\cancel{5ze^{5z}}-5z+\frac{25z^4}{4}-\cancel{5ze^{5z}}+e^{5z}-1=e^{5z}+\frac{75z^4}{4}-5z-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS