Question #85668
Obtain all the first and second order partial derivatives of the function:
f( x, y) =ln( x^2 + y^2)
1
Expert's answer
2019-03-01T08:44:51-0500
f(x,y)=ln(x2+y2)f( x, y) =ln( x^2 + y^2)


fx(x,y)=2xx2+y2\dfrac{\partial f} {\partial x}( x, y) =\dfrac{2x}{ x^2 + y^2}


fy(x,y)=2yx2+y2\dfrac{\partial f} {\partial y}( x, y) =\dfrac{2y}{ x^2 + y^2}


2fx2(x,y)=2y2x2(x2+y2)2\dfrac{\partial^2 f} {\partial x^2}( x, y) =2\dfrac{y^2-x^2}{ (x^2 + y^2)^2}

2fyx(x,y)=4xy(x2+y2)2\dfrac{\partial^2 f} {\partial y \partial x}( x, y) =\dfrac{-4xy}{ (x^2 + y^2)^2}

2fxy(x,y)=4xy(x2+y2)2\dfrac{\partial^2 f} {\partial x \partial y}( x, y) =\dfrac{-4xy}{ (x^2 + y^2)^2}

2fy2(x,y)=2x2y2(x2+y2)2\dfrac{\partial^2 f} {\partial y^2}( x, y) =2\dfrac{x^2-y^2}{ (x^2 + y^2)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS