Question #79975
Using MVT theorem to prove that

x/(1+x^2) < tan (^-1) x < x
1
Expert's answer
2021-11-01T10:16:41-0400

Prove the inequality for x>0x>0 (otherwise it doesn’t hold)

0x11+t2dt=tan1x\int\limits_{0}^{x}{\frac{1}{1+{{t}^{2}}}dt}={{\tan }^{-1}}x

By MVT

0x11+t2dt=11+ξ2x,ξ(0,x)\int\limits_{0}^{x}{\frac{1}{1+{{t}^{2}}}dt}=\frac{1}{1+{{\xi }^{2}}}x,\xi \in \left( 0,x \right)

We have

11+ξ2x<1x=x11+ξ2x>x1+x2\frac{1}{1+{{\xi }^{2}}}\cdot x<1\cdot x=x \\ \frac{1}{1+{{\xi }^{2}}}\cdot x>\frac{x}{1+{{x}^{2}}} \\

Thus

x1+x2<tan1x<x\frac{x}{1+{{x}^{2}}}<{{\tan }^{-1}}x<x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS