Prove the inequality for x>0x>0x>0 (otherwise it doesn’t hold)
∫0x11+t2dt=tan−1x\int\limits_{0}^{x}{\frac{1}{1+{{t}^{2}}}dt}={{\tan }^{-1}}x0∫x1+t21dt=tan−1x
By MVT
∫0x11+t2dt=11+ξ2x,ξ∈(0,x)\int\limits_{0}^{x}{\frac{1}{1+{{t}^{2}}}dt}=\frac{1}{1+{{\xi }^{2}}}x,\xi \in \left( 0,x \right)0∫x1+t21dt=1+ξ21x,ξ∈(0,x)
We have
11+ξ2⋅x<1⋅x=x11+ξ2⋅x>x1+x2\frac{1}{1+{{\xi }^{2}}}\cdot x<1\cdot x=x \\ \frac{1}{1+{{\xi }^{2}}}\cdot x>\frac{x}{1+{{x}^{2}}} \\1+ξ21⋅x<1⋅x=x1+ξ21⋅x>1+x2x
Thus
x1+x2<tan−1x<x\frac{x}{1+{{x}^{2}}}<{{\tan }^{-1}}x<x1+x2x<tan−1x<x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments