Question #348090

Find the length of arc of the curve 𝑦 = 𝑥 3⁄2 /√3 from (0, 0) to (4, √8 / 3 )


1
Expert's answer
2022-06-07T00:24:00-0400

If x=4,y=8/3x=4, y=8/\sqrt{3}


f(x)=(x3/23)=32xf'(x)=(\dfrac{x^{3/2}}{\sqrt{3}})'=\dfrac{\sqrt{3}}{2}\sqrt{x}


L=041+(f(x))2dxL=\displaystyle\int_{0}^{4}\sqrt{1+(f'(x))^2}dx

=041+(32x)2dx=\displaystyle\int_{0}^{4}\sqrt{1+(\dfrac{\sqrt{3}}{2}\sqrt{x})^2}dx

=12044+3xdx=\dfrac{1}{2}\displaystyle\int_{0}^{4}\sqrt{4+3x}dx

=12[13(23(4+3x)3/2)]40=\dfrac{1}{2}[\dfrac{1}{3}(\dfrac{2}{3}(4+3x)^{3/2})]\begin{matrix} 4\\ 0 \end{matrix}

=19(648)=569=\dfrac{1}{9}(64-8)=\dfrac{56}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS