Question #344289

Consider the R^2 - R function f defined by f(x,y) = (x^2 +y)/y.

Determine each of the following limits,if it exists.

a) lim (x,y) -> (0,0) f(x,y),where C1 is the curve y=x

b) lim (x,y) -> (0,0) f(x,y),Where C2 is the curve y=2x

c) lim (x,y) -> (0,0) f(x,y),Where C3 is the curve y=x^2

d) lim (x,y) -> (0,0) f(x,y)


1
Expert's answer
2022-05-26T23:56:49-0400

ANSWER

a)Let (x,y)C1(x,y)\in C_{1} . Substituting y=xy=x into f(x,y)f(x,y) , we have f(x,x)=x2+xxf(x,x)=\frac{x^{2}+x}{x}

lim(x,y)C1(0,0)x2+yy=limx0x2+xx=limx0(x+1)=1\lim_{(x,y)\underset{C_{1}} {\rightarrow}(0,0) }\frac{x^{2}+y}{y}=\lim_{x\rightarrow 0}\frac{x^{2}+x}{x}=\lim_{x\rightarrow 0}(x+1)=1

b)Let (x,y)C2(x,y)\in C_{2} . Substituting y=2xy=2x into f(x,y)f(x,y) , we have f(x,2x)=x2+2x2xf(x,2x)=\frac{x^{2}+2x}{2x}

lim(x,y)C2(0,0)x2+yy=limx0x2+2x2x=12limx0(x+2)=1\lim_{(x,y)\underset{C_{2}} {\rightarrow}(0,0) }\frac{x^{2}+y}{y}=\lim_{x\rightarrow 0}\frac{x^{2}+2x}{2x}=\frac {1}{2}\lim_{x\rightarrow 0}(x+2)=1

c)Let (x,y)C3(x,y)\in C_{3} . Substituting y=x2y=x^{2} into f(x,y)f(x,y) , we have f(x,x2)=x2+x2x2=2(x0)f(x,x^{2})=\frac{x^{2}+x^{2}}{x^{2}}=2 (x\neq 0)

lim(x,y)C3(0,0)x2+yy=limx0x2+x2x2=limx02=2\lim_{(x,y)\underset{C_{3}} {\rightarrow}(0,0) }\frac{x^{2}+y}{y}=\lim_{x\rightarrow 0}\frac{x^{2}+ x^{2}}{x^{2}}= \lim_{x\rightarrow 0 }2=2

Note : lim(x,y)C2(0,0)x2+yylim(x,y)C3(0,0)x2+yy\lim_{(x,y)\underset{C_{2}} {\rightarrow}(0,0) }\frac{x^{2}+y}{y}\neq \lim_{(x,y)\underset{C_{3}} {\rightarrow}(0,0) }\frac{x^{2}+y}{y} .

Conclusion:

d) lim(x,y)(0,0)x2+yy\lim_{(x,y) {\rightarrow}(0,0) }\frac{x^{2}+y}{y} does not exist


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS