ANSWER
a)Let (x,y)∈C1 . Substituting y=x into f(x,y) , we have f(x,x)=xx2+x
lim(x,y)C1→(0,0)yx2+y=limx→0xx2+x=limx→0(x+1)=1
b)Let (x,y)∈C2 . Substituting y=2x into f(x,y) , we have f(x,2x)=2xx2+2x
lim(x,y)C2→(0,0)yx2+y=limx→02xx2+2x=21limx→0(x+2)=1
c)Let (x,y)∈C3 . Substituting y=x2 into f(x,y) , we have f(x,x2)=x2x2+x2=2(x=0)
lim(x,y)C3→(0,0)yx2+y=limx→0x2x2+x2=limx→02=2
Note : lim(x,y)C2→(0,0)yx2+y=lim(x,y)C3→(0,0)yx2+y .
Conclusion:
d) lim(x,y)→(0,0)yx2+y does not exist
Comments