Consider the R^2 - R function f defined by f(x,y) = (x^2 +y)/y.
Determine each of the following limits,if it exists.
a) lim (x,y) -> (0,0) f(x,y),where C1 is the curve y=x
b) lim (x,y) -> (0,0) f(x,y),Where C2 is the curve y=2x
c) lim (x,y) -> (0,0) f(x,y),Where C3 is the curve y=x^2
d) lim (x,y) -> (0,0) f(x,y)
ANSWER
a)Let "(x,y)\\in C_{1}" . Substituting "y=x" into "f(x,y)" , we have "f(x,x)=\\frac{x^{2}+x}{x}"
"\\lim_{(x,y)\\underset{C_{1}} {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}=\\lim_{x\\rightarrow 0}\\frac{x^{2}+x}{x}=\\lim_{x\\rightarrow 0}(x+1)=1"
b)Let "(x,y)\\in C_{2}" . Substituting "y=2x" into "f(x,y)" , we have "f(x,2x)=\\frac{x^{2}+2x}{2x}"
"\\lim_{(x,y)\\underset{C_{2}} {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}=\\lim_{x\\rightarrow 0}\\frac{x^{2}+2x}{2x}=\\frac {1}{2}\\lim_{x\\rightarrow 0}(x+2)=1"
c)Let "(x,y)\\in C_{3}" . Substituting "y=x^{2}" into "f(x,y)" , we have "f(x,x^{2})=\\frac{x^{2}+x^{2}}{x^{2}}=2 (x\\neq 0)"
"\\lim_{(x,y)\\underset{C_{3}} {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}=\\lim_{x\\rightarrow 0}\\frac{x^{2}+ x^{2}}{x^{2}}= \\lim_{x\\rightarrow 0 }2=2"
Note : "\\lim_{(x,y)\\underset{C_{2}} {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}\\neq \\lim_{(x,y)\\underset{C_{3}} {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}" .
Conclusion:
d) "\\lim_{(x,y) {\\rightarrow}(0,0) }\\frac{x^{2}+y}{y}" does not exist
Comments
Leave a comment