Question #344053

Consider the R −R2 function r r defined by   (t) = (a) Write down the domain of r (b) Is r (c) Is r continuous at t = 0? continuous at t = 2? (d) Sketch the curve r 26 . .  (t, t2) if t ∈ [−2,0] (t, t) t, t2 if if t ∈ (0,2) t ∈ [2,3]

1
Expert's answer
2022-05-24T14:05:24-0400
r(t)={(t,t2)if t[2,0](t,t)if t(0,2)(t,t2)if t[2,3]r(t)= \begin{cases} (t, t^2) &\text{if } t\in [-2,0] \\ (t, t) &\text{if } t\in (0,2) \\ (t, t^2) &\text{if } t\in [2,3] \\ \end{cases}


  

(a) Domain: [2,3][-2, 3]


(b)


r(0)=(0,0)r(0)=(0, 0)

limt0r(t)=(0,0)\lim\limits_{t\to 0^-}r(t)=(0,0)

limt0+r(t)=(0,0)\lim\limits_{t\to 0^+}r(t)=(0,0)

Then


limt0r(t)=(0,0)=r(0)\lim\limits_{t\to 0}r(t)=(0,0)=r(0)

The function r(t)r(t) is continuous at t=0.t=0.


(c)


r(2)=(2,4)r(2)=(2, 4)

limt2r(t)=(2,2)\lim\limits_{t\to 2^-}r(t)=(2,2)

limt2+r(t)=(2,4)\lim\limits_{t\to 2^+}r(t)=(2,4)

limt2r(t)limt2+r(t)\lim\limits_{t\to 2^-}r(t)\not=\lim\limits_{t\to 2^+}r(t)

Then


limt2r(t)=does not exist\lim\limits_{t\to 2}r(t)=\text{does not exist}

The function r(t)r(t) is not continuous at t=2.t=2.


(d)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS