Consider the R −R2 function r r defined by (t) = (a) Write down the domain of r (b) Is r (c) Is r continuous at t = 0? continuous at t = 2? (d) Sketch the curve r 26 . . (t, t2) if t ∈ [−2,0] (t, t) t, t2 if if t ∈ (0,2) t ∈ [2,3]
(a) Domain: "[-2, 3]"
(b)
"\\lim\\limits_{t\\to 0^-}r(t)=(0,0)"
"\\lim\\limits_{t\\to 0^+}r(t)=(0,0)"
Then
The function "r(t)" is continuous at "t=0."
(c)
"\\lim\\limits_{t\\to 2^-}r(t)=(2,2)"
"\\lim\\limits_{t\\to 2^+}r(t)=(2,4)"
"\\lim\\limits_{t\\to 2^-}r(t)\\not=\\lim\\limits_{t\\to 2^+}r(t)"
Then
The function "r(t)" is not continuous at "t=2."
(d)
Comments
Leave a comment