The demand for a product, in dollars, is P=2000-0.2x-0.01x^2. Find the consumer surplus when the sales level is 250
P(250)=2000−0.2∗(250)−0.01∗(250)2=1325P(250)=2000-0.2*(250)-0.01*(250)^2=1325P(250)=2000−0.2∗(250)−0.01∗(250)2=1325
The consumer surplus is as follows
∫0250(p(x)−P)dx=∫0250(2000−0.2x−0.01x2−1325)dx=[675x−0.1x2−0.01x33]∣0250=675∗250−0.01∗(250)2−0.01∗(250)33=110416.67\int_0^{250}(p(x)-P)dx=\int_0^{250}(2000-0.2x-0.01x^2-1325)dx=[675x-0.1x^2-\frac{0.01x^3}{3}]|_0^{250}=675*250-0.01*(250)^2-\frac{0.01*(250)^3}{3}=110416.67∫0250(p(x)−P)dx=∫0250(2000−0.2x−0.01x2−1325)dx=[675x−0.1x2−30.01x3]∣0250=675∗250−0.01∗(250)2−30.01∗(250)3=110416.67
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments