Question #339937

Find the Maclaurin series for the functionf(x)=(x2+2x)5f(x)=\sqrt{(x^2+2-x)^5}and its radius of convergence. 


1
Expert's answer
2022-05-12T09:08:53-0400

Maclaurin series is the Taylor series considered at point x=0x=0. The Maclaurin series has the form: f(0)+f(0)x+f(0)x22!+f(0)x33!+...f(0)+f'(0)x+f''(0)\frac{x^2}{2!}+f'''(0)\frac{x^3}{3!}+.... Consider the function g=(2z)52=252(1z2)52g=(2-z)^{\frac{5}2}=2^{\frac52}(1-\frac{z}2)^{\frac52}. Maclaurin series for the function (1x)α(1-x)^{\alpha} has the form: (1x)α=n=0+Cαn(1)nxn,(1-x)^{\alpha}=\sum_{n=0}^{+\infty}C_{\alpha}^n(-1)^nx^{n}, where Cαn=α(α1)...(αn+1)n!C_{\alpha}^n=\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}. It is a known series and it converges for x<1|x|<1. We get: g=(2z)52=252(1z2)52=n=0+Cαn(1)n(12)nzng=(2-z)^{\frac{5}2}=2^{\frac52}(1-\frac{z}2)^{\frac52}=\sum_{n=0}^{+\infty}C_{\alpha}^n(-1)^n\left(\frac12\right)^nz^{n}. Its radius of convergence is: z<2|z|<2. Now we set z=xx2z=x-x^2. We receive: n=0+Cαn(1)n(12)n(xx2)n\sum_{n=0}^{+\infty}C_{\alpha}^n(-1)^n\left(\frac12\right)^n(x-x^2)^{n}.

It remains to expand it using the binomial formula (xx2)n=k=0nCnkxk(1)nkx2n2k(x-x^2)^n=\sum_{k=0}^nC_n^kx^{k}(-1)^{n-k}x^{2n-2k},where Cnk=n!k!(nk)!C_n^k=\frac{n!}{k!(n-k)!}. We get: n=0+Cαn(1)n(12)nk=0nCnk(1)nkx2nk\sum_{n=0}^{+\infty}C_{\alpha}^n(-1)^n\left(\frac12\right)^n\sum_{k=0}^nC_n^k(-1)^{n-k}x^{2n-k}. The series converges for x2x<2|x^2-x|<2. It is enough to solve the latter inequality to get the radius of convergence. Consider the expression: x(x1)x(x-1). It is positive for x(,0)(1,+)x\in(-\infty,0)\cup(1,+\infty). For x(,0)(1,+)x\in(-\infty,0)\cup(1,+\infty) we receive: x2x2<0x^2-x-2<0. The latter is equivalent to: (x+1)(x2)<0(x+1)(x-2)<0. The solution is (1,0)(1,2)(-1,0)\cup(1,2). For x[0,1]x\in[0,1] we get: x2x+2>0x^2-x+2>0. The latter is satisfied for x[0,1].x\in[0,1]. Thus, the Maclaurin series has the form: n=0+k=0nCαnCnk(1)2nk(12)nx2nk\sum_{n=0}^{+\infty}\sum_{k=0}^nC_{\alpha}^nC_n^k(-1)^{2n-k}\left(\frac12\right)^nx^{2n-k} and it converges for x(1,2)x\in(-1,2).

Answer: the Maclaurin series is: n=0+k=0nCαnCnk(1)2nk(12)nx2nk\sum_{n=0}^{+\infty}\sum_{k=0}^nC_{\alpha}^nC_n^k(-1)^{2n-k}\left(\frac12\right)^nx^{2n-k}. It converges for x(1,2).x\in(-1,2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS